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We use the theory of complex networks in order to quantitatively characterize the formation of
communities in a particular financial market. The system is composed by different banks exchanging
on a daily basis loans and debts of liquidity. Through topological analysis and by means of a model
of network growth we can determine the formation of different group of banks characterized by
different business strategy. The model based on Pareto’s Law makes no use of growth or preferential
attachment and it reproduces correctly all the various statistical properties of the system. We believe
that this network modeling of the market could be an efficient way to evaluate the impact of different
policies in the market of liquidity.

Co-evolution and interaction between different agents
is known to be one of the ingredients of the so-called
complex systems. Several examples can be found in
social[1, 2], biological[3, 4, 5, 6], economical[7] and tech-
nological systems[8]. Any of these systems is composed
by a set of agents competing and sometimes receiving re-
ciprocal advantage interacting each other. In the above
situation both coalition and competition are at the basis
of the process of co-evolution and self-organization of the
system. While this class of problems has been tradition-
ally studied in game theory, more recently it has been
introduced an approach based on graph theory[9, 10] By
using networks[11, 12], we can characterize quantitatively
the interaction between agents by means of a series of
topological quantities. The case of study presented here
is composed by banks operating in the Italian market[13].
Banks try to maximize their returns given some con-
straints from the European Central Bank. This complex
interaction results in a differentiation of the strategies
that is well described by means of graph cliques. More
specifically banks of the same size tend to form a cluster
and to adopt a similar business strategy.

A network is a mathematical object composed by ver-
tices and edges joining them. Different measures can be
made, from the degree distribution (the degree is the
number of edges per vertex) to the diameter (i.e. the max-
imum of the distances between every couple of vertices).
It is interesting to note that different real world networks
(ranging from social to biological ones), display a a scale-
free distribution of degrees and a “small-world” charac-
ter, that is to say the diameter is usually very small[14].
More complicated measures determine also the presence
of communities in a network. In this case, some methods
have been proposed[15, 16, 17] but no general approach is
available. The set of banks with their internal loans and
debts has a structure than can be naturally described by
means of a network. In this case the vertices are the dif-
ferent banks. For every pair of banks i and j we draw
an oriented edge from i to j, if bank j borrows liquid-
ity from bank i. The number of in-coming and out-going

FIG. 1: (Color on line) A plot of the inter bank network. The
color codes for the various groups are the following: 1=yellow,
2=red, 3=blue, 4=black. Note that the dark vertices (bank of
group 4) form the core of the system.

edges of a vertex is called respectively the in-degree kin

and the out-degree kout of the vertex (their sum gives
the total degree k). The loans are originated by the fact
that every bank needs liquidity in order to satisfy de-
mands of customers. To buffer liquidity shocks the Eu-
ropean Central Bank requires that on average 2% of all
deposits and debts owned by banks are stored in national
central banks. Given this constraint, banks can exchange
excess reserves on the interbank market with the objec-
tive to satisfy the reserve requirement and in order to
minimize the reserve implicit costs[18, 19, 20]. The data
set analyzed is the e-MID(ref dataset)[21]. This data set
is composed by 586, 007 overnight transactions (i.e. pay-
ments of loans must be done in 24 hours) concluded from
January 1st1999 to December 31st2002 . The network is
composed by a set of N banks (the average number of
〈N〉 banks daily active is 140) connected by an average
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number of links 〈L〉 = 200 (in case of multiple trans-
actions among banks i and j, we count just one link).
As in many other complex networks we find here a fat
tail distribution. By fitting these data with a power law
we obtain for the total degree a frequency distribution
F (k) ∝ k−2.3 and a similar behavior for the in/out-degree
with exponents F (kin) ∝ k−2.7

in and F (kout) ∝ k−2.15
out . Re-

gardless the precise form of the fit, the fat-tail indicates
that banks have an highly heterogeneous behavior, since
the number of their partners varies very widely. We also
measure the assortativity and the clustering coefficient
of the network. The first one is defined as the average
value knn(k) of the neighbors of a vertex whose degree
is k. We find knn(k) ∝ k−0.5. This means that banks
with few partners interact with banks with many part-
ners. Conversely (on average) banks with many partners
interact with banks with few or one. The clustering co-
efficient instead accounts for the number of triangles a
vertex of degree k belongs to. Also this quantity has a
power law behavior of the kind c(k) ∝ k−0.8. All these
measurements refer to daily networks resulting from com-
posing all transactions of every day. In fact, the system
is characterized by a typical time scale of the system, the
month. This time-scale arises from the above mentioned
requirement from European Central Bank. The 2% to be
deposited in national central banks are computed every
month (the 23rd). The day in which this happens (also
indicated as End of Month or EOM) witness a frantic ac-
tivity of the banks. Interestingly, regardless the change in
volumes all the above topological measurements remain
similar when computed in different days of month.

We try to understand if there are some banks with
similar behavior and if they have some properties in com-
mon. We have been able to identify specific features for
banks of different capital size. In fact for each bank we
know only its category (small, medium, large, very large)
based on the capital of the banks (as recorded by Bank
of Italy). Nevertheless we observe that this classification
is strongly correlated with the total amount of daily vol-
ume of transactions: we use this latter quantity as it is
strictly related to capital size. Using this quantity we can
divide banks in four groups (same number of classes of
the Bank of Italy classification). Group 1 with volume in
the range 0 − 23 million Euro per day, Group 2 in the
range 23− 70 million Euro per day, Group 3 in the range
70 − 165 million Euro per day, Group 4 over 165 million
Euro per day. In this way we find an overlap of more than
90% between the two classifications.

Using this information we realized a picture of the sys-
tem as an oriented network whose size and color of the
vertices represent the different groups that play the role
of communities when described by means of a network.
As evident from Figure 1 we find that the core of the
structure is composed by banks of the last groups (very
large). The edges in Figure 1 represent the net amount
of money exchanged in a whole day. As mentioned above
the measurements in different days give similar results.
A more quantitative measure of the different behavior of
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FIG. 2: (A plot of the out-degree and in-degree (in the first
inset) distributions respectively. As already noticed, the con-
tribution to the tail of frequency distribution emerges from
the banks of group 4. Using the division in 4 groups, i.e. in 4
colors, mentioned in the text, we also colored each bin of F (k)
with the average color of vertices which are in that bin. For
example the average color of banks with degree 10 is blue. For
non integer value of this average we introduced intermediate
colors. In the smaller inset the daily volume of transactions
during one month period.

banks from different groups is given in the Table I, where
for every pair of groups we reported the mean percent-
age of the total number of transactions between banks
of those groups. This result is confirmed by the first
two plots of Figure 2, where we represented in-degree
frequency distribution (number of borrowing edges) and
the out-degree frequency distribution (number of lend-
ing edges) in the network (experimental distributions are
obtained on an ensemble of daily networks). It is possi-
ble to compute the group of the banks whose degree is
k. We represented this information by coloring accord-
ingly the plot. We have separately informations about
degree and volumes of different banks. Interestingly we
note that the degree and the volume are correlated[22],
since v(k) ∼ k1.1.

With respect to the scale of colors in Figure 1, we also
added some intermediate colors to account for the values
between one group and another. The tail of the two dis-
tributions is black, i.e. it is mainly composed by banks
of group 4. We again find that banks of groups 1 and 2
are the leaves of the network, staying at periphery of the
structure and not interacting each other. This particu-
larity together with the experimental evidence that they
are more lenders on average means that banks of these
groups are the lenders for the whole system.

The role of the different groups is shown in the Figure
4. Another measure of the clustering of banks in different
groups is given by the volume-volume correlation vnn(v),
that is the average value vnn of the neighbors of a ver-
tex whose volume is v, In fact we find that vnn(v) is
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FIG. 3: Left: frequency distribution F (k) for a certain de-
gree k. Comparison between experiment (red dots) and results
obtained with simulation of our model (black dots). Right:
Above comparison between experiment (red dots) and results
obtained with simulation of our model (black dots) for the
assortativity < knn(k) > and below for the clustering coeffi-
cient c(k).
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FIG. 4: The division on classes of vertices permits to repre-
sent in a very easy way the organizational principles of the
network. Following results of Table 1 we draw a link among
two groups when the number of links between banks belonging
to them is bigger then the average value (10). Using the net
volumes as weight of links, we can represent the directed in-
teractions among classes of nodes: class 4 appear to be clearly
a borrower and class 1 lender.

the superposition of a power-law function vnn(v) ∼ v−0.3

with a function peaked around volume values of banks of
group 1.

In order to reproduce the topological properties we de-
fine a model whose only assumption is that a vertex is
solely determined by its size (as measured by its capital
or equivalently by its group). Therefore, the idea is that
the vertices representing the banks are defined by means
of an intrinsic character corresponding to the size of the
bank[23, 24]. Since this information is not available we
use the total daily volume of transactions as a good mea-
sure of the size of banks (we stated above that this is
a good approximation). We call this quantity fitness of
the bank; this is the main quantity driving the network
formation in the our model.

Following the Pareto’s law (confirmed in this data anal-
ysis) we assume that the distribution of sizes v in the
model is a power-law P (v) ∝ v−2, where the value of the
exponent correspond to that of the data (see Fig.5).
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FIG. 5: Distribution of the total daily volume of transaction
per bank. This quantity is used as fitness in our model

We assign to the N nodes (N is the size of the system)
a value drawn from the previous distribution. Vertices
origin and destination for one edge are chosen with a
probability pij proportional to the sum 5B of respective
sizes vi and vj . In formulas

pij =
(vi + vj)∑

i,j>i(vi + vj)
. (1)

∑
i,j>i

(vi + vj) =
1

2

∑
i,j 6=i

(vi + vj) = (N − 1)Vtot (2)

where Vtot =
∑

j

vj (3)

We obtain in this way pij =
vi+vj

(N−1)Vtot
This choice of

probability reproduces the fact that big banks are priv-
ileged in transactions among themselves while two little
banks are very unlikely to interact. We produce an en-
semble of 100 statistical realizations of the model and
then we calculate average statistical distributions. In Fig.
2 we compare experimental and simulated P (k), c(k) and
knn(k): here the distributions are also averaged on all
EOM days of 2002. The simulation of the model repro-
duces remarkably well the considered topological prop-
erties of the inter-bank market P (k), c(k) and knn(k).
The real and simulated networks disclose disassortative
behavior: this phenomenon has already been observed
in other systems and it has been called rich club phe-

nomenon, referring to the fact that in many real networks
hubs are often connected each other[2]. Fitness models on
the other hand are known to produce disassortative net-
works, even if with different fitness distributions[24].
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It is interesting to note that this model does not con-
sider preferential attachment rules. With the term “pref-
erential attachment” it is indicated a specific procedure
in which a vertex receives more edges according to the
value of its degree. Note that this procedure must be
very precise because if the probability of growth is pro-
portional to the degree raised to a power different from 1,
the scale invariance is destroyed. Therefore, preferential
attachment has a precise definition different from “rough
proportionality”. When considering instead a fitness al-
gorithm, it is true that the largest the fitness the largest
the degree, but the microscopic procedure is different. A
large degree is a consequence of an intrinsic quality, not
the cause of the improvement of site connectivity. This
is an important point since in this way the search for the
origin of scale-invariance in networks can be explained
by means of the ubiquitous presence of Pareto’s law in
Economics and Finance.

To quantify the agreement between experimental and
simulated networks we also define an overlap parameter
m specifying how good is the behavior of the model in
reproducing the observed clustering.

To quantify the agreement between experimental and
simulated networks, we proceed in the following way. We
define a matrix E, that is a weighted matrix 4×4, where
the weights represent the number of connections between
groups. In order to measure the overlap between the ma-
trices obtained by data and by computer model, we define
a distance based on the differences between the elements
of the matrices.

d =
∑

g,k≥g

|Eexp
g,k − Enum

g,k | (4)

The sum of all elements,
∑

g,k≥g Eexp
g,k and

∑
g,k≥g Enum

g,k ,
is equal to Etot in both cases. Therefore the maximum
possible difference is 2Etot. This happens when all the
links are between two groups in one case and in other
two groups in the other. We use this maximum value to
normalize the above expression and we than define the
overlap parameter m: m = 1 − d/2Etot

A natural way to define groups in the model is to ob-
tain a similar number c of banks for each class i.e. c =
Nbanks/Nclasses. It is useful nevertheless to pass to con-
tinuous form. Using the previously introduced P (v) giv-
ing the probability distribution of the size v of one bank.
Banks of the same group g are in the range [vg, vg +△vg].

∫ vg+△vg

vg

P (v′)dv′ = c (5)

In our case, since the average number of banks is 140,
we obtain c ≃ 35. Then △v = cv2/(N − cv). We now
compute the number Eg,k of links going from one group
of banks gg to another one gk, for every possible pair of
banks.

Eg,k =
∑
i,j

ai,jδ(gg − g(i))δ(gk − g(j)) (6)

where g(i) represent the group of bank i and ai,j is the
element of the adjacency matrix. In the continuous ap-
proximation, defining Ev′v′′ the number of edges from
vertices of fitness v′ to vertices of fitness v′′, Eg,k is given
by

Eg,k =

∫ vg+△vg

vg

∫ vk+△vk

vk

Ev′v′′dv′dv′′ =

= (N/2)

∫ ∫
P (v′)P (v′′)p(v′, v′′)dv′dv′′ (7)

where N is the number of vertices, p(v′, v′′) is the link-
ing probability, P (v) is the fitness distribution and the
formula is obtained integrating the expression for the av-
erage degree[24] (the integration domains are the ranges
of volumes of groups g and k respectively). To evaluate
the relevance of division in classes, we have to compare
the value of Eg,k with the corresponding quantity Enull

g,k

for a network where there is not a division in classes (null
hypothesis). The analytical expression for the null case is
Enull

g,k = Etot/10 where 10 is the number of possible cou-
plings between the 4 groups. The comparison between the
two networks evidences that in the real case emerges the
division in groups: in Tab. 1 for each possible combina-
tion of groups is reported the value Eg,k/Etot. In the null
case, each element of the same matrix should be equal to
10. In our case the overlap m is very good (98%).

Group 1 2 3 4

1 0 6 4 8

2 6 3 8 17

3 4 8 5 27

4 8 17 27 22

TABLE I: (Color on line)The number of daily interactions be-
tween the banks of different groups. Data have been averaged
during one month.

In conclusion we present here a network representa-
tion of a financial market that in a natural way allows
to measure the presence of clustering. By means of a
suitable chosen model of network formation we can also
understand the mechanism driving the formation of such
clusters. The agreement between the model and exper-
imental results is remarkably good; this seems to sug-
gest that the network formation is not due to the growth
mechanism of preferential attachment. Since the effects
of European Central Bank policies are under debate[19],
graph theory can help in understand the system behavior
under change of external conditions.

GC acknowledges support from European Project
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