44,135 research outputs found

    Selective COX-2 inhibitors and risk of myocardial infarction

    Get PDF
    Selective inhibitors of cyclooxygenase- 2 ( COX- 2, ` coxibs') are highly effective anti-inflammatory and analgesic drugs that exert their action by preventing the formation of prostanoids. Recently some coxibs, which were designed to exploit the advantageous effects of non- steroidal anti-inflammatory drugs while evading their side effects, have been reported to increase the risk of myocardial infarction and atherothrombotic events. This has led to the withdrawal of rofecoxib from global markets, and warnings have been issued by drug authorities about similar events during the use of celecoxib or valdecoxib/ parecoxib, bringing about questions of an inherent atherothrombotic risk of all coxibs and consequences that should be drawn by health care professionals. These questions need to be addressed in light of the known effects of selective inhibition of COX- 2 on the cardiovascular system. Although COX- 2, in contrast to the cyclooxygenase-1 ( COX- 1) isoform, is regarded as an inducible enzyme that only has a role in pathophysiological processes like pain and inflammation, experimental and clinical studies have shown that COX- 2 is constitutively expressed in tissues like the kidney or vascular endothelium, where it executes important physiological functions. COX- 2- dependent formation of prostanoids not only results in the mediation of pain or inflammatory signals but also in the maintenance of vascular integrity. Especially prostacyclin ( PGI(2)), which exerts vasodilatory and antiplatelet properties, is formed to a significant extent by COX- 2, and its levels are reduced to less than half of normal when COX- 2 is inhibited. This review outlines the rationale for the development of selective COX- 2 inhibitors and the pathophysiological consequences of selective inhibition of COX- 2 with special regard to vasoactive prostaglandins. It describes coxibs that are currently available, evaluates the current knowledge on the risk of atherothrombotic events associated with their intake and critically discusses the consequences that should be drawn from these insights. Copyright (C) 2005 S. Karger AG, Basel

    Habituation to novel visual vestibular environments with special reference to space flight

    Get PDF
    The etiology of space motion sickness and the underlying physiological mechanisms associated with spatial orientation in a space environment were investigated. Human psychophysical experiments were used as the basis for the research concerning the interaction of visual and vestibular cues in the development of motion sickness. Particular emphasis is placed on the conflict theory in terms of explaining these interactions. Research on the plasticity of the vestibulo-ocular reflex is discussed

    Photo sensor array technology development

    Get PDF
    The development of an improved capability photo sensor array imager for use in a Viking '75 type facsimile camera is presented. This imager consists of silicon photodiodes and lead sulfide detectors to cover a spectral range from 0.4 to 2.7 microns. An optical design specifying filter configurations and convergence angles is described. Three electronics design approaches: AC-chopped light, DC-dual detector, and DC-single detector, are investigated. Experimental and calculated results are compared whenever possible using breadboard testing and tolerance analysis techniques. Results show that any design used must be forgiving of the relative instability of lead sulfide detectors. A final design using lead sulfide detectors and associated electronics is implemented by fabrication of a hybrid prototype device. Test results of this device show a good agreement with calculated values

    Stroboscopic Generation of Topological Protection

    Full text link
    Trapped neutral atoms offer a powerful route to robust simulation of complex quantum systems. We present here a stroboscopic scheme for realization of a Hamiltonian with nn-body interactions on a set of neutral atoms trapped in an addressable optical lattice, using only 1- and 2-body physical operations together with a dissipative mechanism that allows thermalization to finite temperature or cooling to the ground state. We demonstrate this scheme with application to the toric code Hamiltonian, ground states of which can be used to robustly store quantum information when coupled to a low temperature reservoir.Comment: 5 pages, 2 figures. Published versio

    First order phase transition in the Quantum Adiabatic Algorithm

    Full text link
    We simulate the quantum adiabatic algorithm (QAA) for the exact cover problem for sizes up to N=256 using quantum Monte Carlo simulations incorporating parallel tempering. At large N we find that some instances have a discontinuous (first order) quantum phase transition during the evolution of the QAA. This fraction increases with increasing N and may tend to 1 for N -> infinity.Comment: 5 pages, 3 figures. Replaced with published version; two figures slightly changed and some small changes to the tex

    Convergence of invariant densities in the small-noise limit

    Full text link
    This paper presents a systematic numerical study of the effects of noise on the invariant probability densities of dynamical systems with varying degrees of hyperbolicity. It is found that the rate of convergence of invariant densities in the small-noise limit is frequently governed by power laws. In addition, a simple heuristic is proposed and found to correctly predict the power law exponent in exponentially mixing systems. In systems which are not exponentially mixing, the heuristic provides only an upper bound on the power law exponent. As this numerical study requires the computation of invariant densities across more than 2 decades of noise amplitudes, it also provides an opportunity to discuss and compare standard numerical methods for computing invariant probability densities.Comment: 27 pages, 19 figures, revised with minor correction

    Basins of attraction for cascading maps

    Full text link
    We study a finite uni-directional array of "cascading" or "threshold coupled" chaotic maps. Such systems have been proposed for use in nonlinear computing and have been applied to classification problems in bioinformatics. We describe some of the attractors for such systems and prove general results about their basins of attraction. In particular, we show that the basins of attraction have infinitely many path components. We show that these components always accumulate at the corners of the domain of the system. For all threshold parameters above a certain value, we show that they accumulate at a Cantor set in the interior of the domain. For certain ranges of the threshold, we prove that the system has many attractors.Comment: 15 pages, 9 figures. To appear in International Journal of Bifurcations and Chao
    corecore