Trapped neutral atoms offer a powerful route to robust simulation of complex
quantum systems. We present here a stroboscopic scheme for realization of a
Hamiltonian with n-body interactions on a set of neutral atoms trapped in an
addressable optical lattice, using only 1- and 2-body physical operations
together with a dissipative mechanism that allows thermalization to finite
temperature or cooling to the ground state. We demonstrate this scheme with
application to the toric code Hamiltonian, ground states of which can be used
to robustly store quantum information when coupled to a low temperature
reservoir.Comment: 5 pages, 2 figures. Published versio