105 research outputs found

    Evaluation and Investigation of the Delay in VoIP Networks

    Get PDF
    The paper is focused mainly on the delay problems, which considerably influence the final quality of connections in VoIP (Voice over IP) networks. The paper provides a detailed exploration of the nature and mechanisms of the delay. The main purpose of the investigation was an attempt to formulate a mathematical model of delay in the VoIP network and its subsequent analysis by laboratory data

    The Influence of Different Fertilization Strategies on the Grain Yield of Field Peas (Pisum sativum L.) under Conventional and Conservation Tillage

    Get PDF
    Weather, tillage, and fertilization are the major factors affecting the grain yield of field peas (Pisum sativum L.). However, the impact of tillage and fertilization on yield is not well understood. Therefore, this experiment was initiated in 1999. In this manuscript, we report the data recorded during the period of 2011-2015 to quantify the impacts on yield. Field peas were planted in seedbeds prepared through conventional tillage (CT)-moldboard ploughing to the depth of 0.22 m; and minimum tillage (MT)-disking to the depth of 0.12 m. The crop received three fertilization treatments, including zero fertilization (control); nitrogen, phosphorus and potassium (NPK) mineral fertilization treatment; and NPK mineral fertilization plus the incorporation of pre-crop biomass. Five years' average data indicated the highest yield on fertilized treatments (2.85-2.98 t ha(-1) vs. 2.66 t ha(-1)) regardless of the tillage. When comparing the yield of fertilized treatments, the yield under CT (2.98 t ha(-1)) was significantly higher than that of MT (2.85 t ha(-1)). However, on non-fertilized treatments (less fertile plots), a higher yield was recorded under MT (2.71 t ha(-1)) compared with CT (2.40 t ha(-1)). Overall, the results of this study suggest that fertilizer application together with incorporation of the above-ground biomass of the previous crop may help sustain pea grain yield

    Rotation-induced 3D vorticity in 4He superfluid films adsorbed on a porous glass

    Full text link
    Detailed study of torsional oscillator experiments under steady rotation up to 6.28 rad/sec is reported for a 4He superfluid monolayer film formed in 1 micrometer-pore diameter porous glass. We found a new dissipation peak with the height being in proportion to the rotation speed, which is located to the lower temperature than the vortex pair unbinding peak observed in the static state. We propose that 3D coreless vortices ("pore vortices") appear under rotation to explain this new peak. That is, the new peak originates from dissipation close to the pore vortex lines, where large superfluid velocity shifts the vortex pair unbinding dissipation to lower temperature. This explanation is confirmed by observation of nonlinear effects at high oscillation amplitudes.Comment: 4pages, 5figure

    M13 phages uptake of gold nanoparticles for radio-and thermal-therapy and contrast imaging improvement

    Get PDF
    The presented work deals with the uptake of gold nanoparticles (Au NPs) by M13 phages in solutions. In particular, the Au NPs uptake modalities and their localization in the filamentous phages are evaluated and measured. Gold spherical nanoparticles (with an average diameter of the order of 10 nm) are obtained by laser ablation in water with a sodium citrated surfactant. The interest of such application comes from the possibility to employ living biological structures to transport heavy metallic nanoparticles inside cells of tumoral tissues. Indeed, phages have the capability to introduce Au NPs in the proximity to the cell nucleus, increasing the efficiency of DNA destruction in the tumoral cells by employing low doses of ionizing radiation during radiotherapy and hyperthermia treatments. Several analyses and microscopy characterizations of the prepared phages samples embedding gold nanoparticles are presented, demonstrating that the presence of Au NPs increases the phages imaging contrast

    Factors associated with diversity, quantity and zoonotic potential of ectoparasites on urban mice and voles

    Get PDF
    Wild rodents are important hosts for tick larvae but co-infestations with other mites and insects are largely neglected. Small rodents were trapped at four study sites in Berlin, Germany, to quantify their ectoparasite diversity. Host-specific, spatial and temporal occurrence of ectoparasites was determined to assess their influence on direct and indirect zoonotic risk due to mice and voles in an urban agglomeration. Rodent-associated arthropods were diverse, including 63 species observed on six host species with an overall prevalence of 99%. The tick Ixodes ricinus was the most prevalent species, found on 56% of the rodents. The trapping location clearly affected the presence of different rodent species and, therefore, the occurrence of particular host-specific parasites. In Berlin, fewer temporary and periodic parasite species as well as non-parasitic species (fleas, chiggers and nidicolous Gamasina) were detected than reported from rural areas. In addition, abundance of parasites with low host-specificity (ticks, fleas and chiggers) apparently decreased with increasing landscape fragmentation associated with a gradient of urbanisation. In contrast, stationary ectoparasites, closely adapted to the rodent host, such as the fur mites Myobiidae and Listrophoridae, were most abundant at the two urban sites. A direct zoonotic risk of infection for people may only be posed by Nosopsyllus fasciatus fleas, which were prevalent even in the city centre. More importantly, peridomestic rodents clearly supported the life cycle of ticks in the city as hosts for their subadult stages. In addition to trapping location, season, host species, body condition and host sex, infestation with fleas, gamasid Laelapidae mites and prostigmatic Myobiidae mites were associated with significantly altered abundance of I. ricinus larvae on mice and voles. Whether this is caused by predation, grooming behaviour or interaction with the host immune system is unclear. The present study constitutes a basis to identify interactions and vector function of rodent-associated arthropods and their potential impact on zoonotic diseases

    Unpredictability of metabolism—the key role of metabolomics science in combination with next-generation genome sequencing

    Get PDF
    Next-generation sequencing provides technologies which sequence whole prokaryotic and eukaryotic genomes in days, perform genome-wide association studies, chromatin immunoprecipitation followed by sequencing and RNA sequencing for transcriptome studies. An exponentially growing volume of sequence data can be anticipated, yet functional interpretation does not keep pace with the amount of data produced. In principle, these data contain all the secrets of living systems, the genotype–phenotype relationship. Firstly, it is possible to derive the structure and connectivity of the metabolic network from the genotype of an organism in the form of the stoichiometric matrix N. This is, however, static information. Strategies for genome-scale measurement, modelling and predicting of dynamic metabolic networks need to be applied. Consequently, metabolomics science—the quantitative measurement of metabolism in conjunction with metabolic modelling—is a key discipline for the functional interpretation of whole genomes and especially for testing the numerical predictions of metabolism based on genome-scale metabolic network models. In this context, a systematic equation is derived based on metabolomics covariance data and the genome-scale stoichiometric matrix which describes the genotype–phenotype relationship

    Polymorphisms of the porcine cathepsins, growth hormone-releasing hormone and leptin receptor genes and their association with meat quality traits in Ukrainian Large White breed

    Get PDF
    © 2016, The Author(s). Cathepsins, growth hormone-releasing hormone (GHRH) and leptin receptor (LEPR) genes have been receiving increasing attention as potential markers for meat quality and pig performance traits. This study investigated the allele variants in four cathepsin genes (CTSB, CTSK, CTSL, CTSS), GHRH and LEPR in pure-bred Ukrainian Large White pigs and evaluated effects of the allele variants on meat quality characteristics. The study was conducted on 72 pigs. Genotyping was performed using PCR–RFLP technique. Meat quality characteristics analysed were intramuscular fat content, tenderness, total water content, ultimate pH, crude protein and ashes. A medium level of heterozygosity values was established for GHRH and LEPR genes which corresponded to very high levels of informativeness indexes. Cathepsins CTSL, CTSB and CTSK had a low level of heterozygosity, and CTSS did not segregate in this breed. Association studies established that intramuscular fat content and tenderness were affected by the allele variance in GHRH and LEPR but not by CTSB and CTSL genes. The GHRH results could be particularly relevant for the production of lean prime cuts as the A allele is associated with both, a lower meat fat content and better tenderness values, which are two attributes highly regarded by consumers. Results of this study suggest that selective breeding towards GHRH/AA genotype would be particularly useful for improving meat quality characteristics in the production systems involving lean Large White lines, which typically have less than 2% intramuscular fat content

    Evidence for long-range glycosyl transfer reactions in the gas phase

    Full text link
    AbstractA long-range glycosyl transfer reaction was observed in the collision-induced dissociation Fourier transform (CID FT) mass spectra of benzylamine-labeled and 9-aminofluorene-labeled lacto-N-fucopentaose I (LNFP I) and lacto-N-difucohexaose I (LNDFH I). The transfer reaction was observed for the protonated molecules but not for the sodiated molecules. The long-range glycosyl transfer reaction involved preferentially one of the two L-fucose units in labeled LNDFH I. CID experiments with labeled LNFP I and labeled LNFP II determined the fucose with the greatest propensity for migration. Further experiments were performed to determine the final destination of the migrating fucose. Molecular modeling supported the experiments and reaction mechanisms are proposed

    Vacuum-Ultraviolet Photoionization and Mass Spectrometric Characterization of Lignin Monomers Coniferyl and Sinapyl Alcohols

    Get PDF
    The fragmentation mechanisms of monolignols under various energetic processes are studied with jet-cooled thermal desorption molecular beam (TDMB) mass spectrometry (MS), 25 keV Bi3+ secondary ion MS (SIMS), synchrotron vacuum-ultraviolet secondary neutral MS (VUV-SNMS) and theoretical methods. Experimental and calculated appearance energies of fragments observed in TDMB MS indicate that the coniferyl alcohol photoionization mass spectra contain the molecular parent and several dissociative photoionization products. Similar results obtained for sinapyl alcohol are also discussed briefly. Ionization energies of 7.60 eV ? 0.05 eV for coniferyl alcohol and<7.4 eV for both sinapyl and dihydrosinapyl alcohols are determined. The positive ion SIMS spectrum of coniferyl alcohol shares few characteristic peaks (m/z = 137 and 151) with the TDMB mass spectra, shows extensive fragmentation, and does not exhibit clear molecular parent signals. VUV-SNMS spectra, on the other hand, are dominated by the parent ion and main fragments also present in the TDMB spectra. Molecular fragmentation in VUV-SNMS spectra can be reduced by increasing the extraction delay time. Some features resembling the SIMS spectra are also observed in the desorbed neutral products. The monolignol VUV-SNMS peaks shared with the TDMB mass spectra suggest that dissociative photoionization of ion-sputtered neutral molecules predominate in the VUV-SNMS mass spectra, despite the extra internal energy imparted in the initial ion impact. The potential applications of these results to imaging mass spectrometry of bio-molecules are discussed
    corecore