843 research outputs found

    Electronic Education at the Faculty of Nuclear Sciences and Physical Engineering

    Get PDF
    This paper deals with the current issue of electronic education, and is based on a study of Internet support for education at the Faculty of Nuclear Sciences and Physical Engineering at the Czech Technical University in Prague.The goal of the study was to establish to what extent and in what ways electronic support for education is utilized at FNSPE CTU. In order to answer these questions, a questionnaire was conducted at the faculty. We will present the outcomes here.

    Reanalysis of the FEROS observations of HIP 11952

    Full text link
    Aims. We reanalyze FEROS observations of the star HIP 11952 to reassess the existence of the proposed planetary system. Methods. The radial velocity of the spectra were measured by cross-correlating the observed spectrum with a synthetic template. We also analyzed a large dataset of FEROS and HARPS archival data of the calibrator HD 10700 spanning over more than five years. We compared the barycentric velocities computed by the FEROS and HARPS pipelines. Results. The barycentric correction of the FEROS-DRS pipeline was found to be inaccurate and to introduce an artificial one-year period with a semi-amplitude of 62 m/s. Thus the reanalysis of the FEROS data does not support the existence of planets around HIP 11952.Comment: 7 pages, 8 figures, 1 tabl

    Evolution of microstructure and mechanical properties during annealing of heavily rolled AlCoCrFeNi2. 1 eutectic high-entropy alloy

    Get PDF
    Changes in the\ua0microstructure\ua0and mechanical properties during annealing at 800\ua0\ub0C have been characterized in a 90% cold-rolled AlCoCrFeNi2.1\ua0eutectic high-entropy alloy containing the FCC and B2 (ordered BCC) phases. In the as-rolled condition, the FCC phase is found to contain a high frequency of finely spaced deformation-induced boundaries, which provides a high driving force for recrystallization within this phase. Quantitative analysis of\ua0electron backscatter diffraction\ua0data from the annealed samples indicates that recrystallization progresses faster in the FCC phase than in B2 regions. Although recrystallization leads to substantial coarsening of the microstructure, the average recrystallized grain size remains in the submicron range even after 2\ua0h at 800\ua0\ub0C. Tensile test data demonstrate that combinations of high yield strength and good ductility are obtained in partially recrystallized samples produced by annealing for 2.5–10\ua0min. However, the work-hardening capacity of each annealed sample is lower than that of the cold-rolled sample. Furthermore, for the samples annealed for at least 5\ua0min a yield drop is observed soon after the onset of\ua0plastic deformation. Analysis of the microstructure and mechanical behavior in several annealed AlCoCrFeNi2.1\ua0samples indicates a clear correlation between the magnitude of the yield drop and the recrystallized fraction. The mechanical behavior of the AlCoCrFeNi2.1\ua0alloy studied in this work is compared with that reported in previous publications

    C/EBP-induced transdifferentiation reveals granulocyte-macrophage precursor-like plasticity of B cells

    Get PDF
    The lymphoid-myeloid transdifferentiation potentials of members of the C/EBP family (C/EBP{alpha}, {beta}, {delta}, and {epsilon}) were compared in v-Abl-immortalized primary B cells. Conversion of B cells to macrophages was readily induced by the ectopic expression of any C/EBP, and enhanced by endogenous C/EBP{alpha} and {beta} activation. High transgene expression of C/EBP{beta} or C/EBP{epsilon}, but not of C/EBP{alpha} or C/EBP{delta}, also induced the formation of granulocytes. Granulocytes and macrophages emerged in a mutually exclusive manner. C/EBP{beta}-expressing B cells produced granulocyte-macrophage progenitor (GMP)-like progenitors when subjected to selective pressure to eliminate lymphoid cells. The GMP-like progenitors remained self-renewing and cytokine-independent, and continuously produced macrophages and granulocytes. In addition to their suitability to study myelomonocytic lineage bifurcation, lineage-switched GMP-like progenitors could reflect the features of the lympho-myeloid lineage switch observed in leukemic progression

    Planetary companions around the metal-poor star HIP 11952

    Full text link
    Aims. We carried out a radial-velocity survey to search for planets around metal-poor stars. In this paper we report the discovery of two planets around HIP 11952, a metal-poor star with [Fe/H]= -1.9 that belongs to our target sample. Methods. Radial velocity variations of HIP 11952 were monitored systematically with FEROS at the 2.2 m telescope located at the ESO La Silla observatory from August 2009 until January 2011. We used a cross-correlation technique to measure the stellar radial velocities (RV). Results. We detected a long-period RV variation of 290 d and a short-period one of 6.95 d. The spectroscopic analysis of the stellar activity reveals a stellar rotation period of 4.8 d. The Hipparcos photometry data shows intra-day variabilities, which give evidence for stellar pulsations. Based on our analysis, the observed RV variations are most likely caused by the presence of unseen planetary companions. Assuming a primary mass of 0.83 M\odot, we computed minimum planetary masses of 0.78 MJup for the inner and 2.93 MJup for the outer planet. The semi-major axes are a1 = 0.07 AU and a2 = 0.81 AU, respectively. Conclusions. HIP 11952 is one of very few stars with [Fe/H]< -1.0 which have planetary companions. This discovery is important to understand planet formation around metal-poor starsComment: Published in A&

    On the diffraction pattern of C60 peapods

    Full text link
    We present detailed calculations of the diffraction pattern of a powder of bundles of C60_{60} peapods. The influence of all pertinent structural parameters of the bundles on the diffraction diagram is discussed, which should lead to a better interpretation of X-ray and neutron diffraction diagrams. We illustrate our formalism for X-ray scattering experiments performed on peapod samples synthesized from 2 different technics, which present different structural parameters. We propose and test different criteria to solve the difficult problem of the filling rate determination.Comment: Sumitted 19 May 200

    Analysis of Peculiarities of the Stellar Velocity Field in the Solar Neighborhood

    Full text link
    Based on a new version of the Hipparcos catalogue and an updated Geneva-Copenhagen survey of F and G dwarfs, we analyze the space velocity field of about 17000 single stars in the solar neighborhood. The main known clumps, streams, and branches (Pleiades, Hyades, Sirius, Coma Berenices, Hercules, Wolf 630-alpha Ceti, and Arcturus) have been identified using various approaches. The evolution of the space velocity field for F and G dwarfs has been traced as a function of the stellar age. We have managed to confirm the existence of the recently discovered KFR08 stream. We have found 19 Hipparcos stars, candidates for membership in the KFR08 stream, and obtained an isochrone age estimate for the stream, 13 Gyr. The mean stellar ages of the Wolf 630-alpha Ceti and Hercules streams are shown to be comparable, 4--6 Gyr. No significant differences in the metallicities of stars belonging to these streams have been found. This is an argument for the hypothesis that these streams owe their origin to a common mechanism.Comment: 23 pages, 9 figure

    Quantifying Kinematic Substructure in the Milky Way's Stellar Halo

    Get PDF
    We present and analyze the positions, distances, and radial velocities for over 4000 blue horizontal-branch (BHB) stars in the Milky Way's halo, drawn from SDSS DR8. We search for position-velocity substructure in these data, a signature of the hierarchical assembly of the stellar halo. Using a cumulative "close pair distribution" (CPD) as a statistic in the 4-dimensional space of sky position, distance, and velocity, we quantify the presence of position-velocity substructure at high statistical significance among the BHB stars: pairs of BHB stars that are close in position on the sky tend to have more similar distances and radial velocities compared to a random sampling of these overall distributions. We make analogous mock-observations of 11 numerical halo formation simulations, in which the stellar halo is entirely composed of disrupted satellite debris, and find a level of substructure comparable to that seen in the actually observed BHB star sample. This result quantitatively confirms the hierarchical build-up of the stellar halo through a signature in phase (position-velocity) space. In detail, the structure present in the BHB stars is somewhat less prominent than that seen in most simulated halos, quite possibly because BHB stars represent an older sub-population. BHB stars located beyond 20 kpc from the Galactic center exhibit stronger substructure than at rgc<20\rm r_{gc} < 20 kpc.Comment: 29 page, 10 figures, 1 table; accepted by APJ; for related article by another group see arXiv:1011.192

    Annotations for Rule-Based Models

    Full text link
    The chapter reviews the syntax to store machine-readable annotations and describes the mapping between rule-based modelling entities (e.g., agents and rules) and these annotations. In particular, we review an annotation framework and the associated guidelines for annotating rule-based models of molecular interactions, encoded in the commonly used Kappa and BioNetGen languages, and present prototypes that can be used to extract and query the annotations. An ontology is used to annotate models and facilitate their description
    • 

    corecore