74 research outputs found

    Thermal transport of the XXZ chain in a magnetic field

    Full text link
    We study the heat conduction of the spin-1/2 XXZ chain in finite magnetic fields where magnetothermal effects arise. Due to the integrability of this model, all transport coefficients diverge, signaled by finite Drude weights. Using exact diagonalization and mean-field theory, we analyze the temperature and field dependence of the thermal Drude weight for various exchange anisotropies under the condition of zero magnetization-current flow. First, we find a strong magnetic field dependence of the Drude weight, including a suppression of its magnitude with increasing field strength and a non-monotonic field-dependence of the peak position. Second, for small exchange anisotropies and magnetic fields in the massless as well as in the fully polarized regime the mean-field approach is in excellent agreement with the exact diagonalization data. Third, at the field-induced quantum critical line between the para- and ferromagnetic region we propose a universal low-temperature behavior of the thermal Drude weight.Comment: 9 pages REVTeX4 including 5 figures, revised version, refs. added, typos correcte

    Non-dissipative Thermal Transport and Magnetothermal Effect for the Spin-1/2 Heisenberg Chain

    Full text link
    Anomalous magnetothermal effects are discussed in the spin-1/2 Heisenberg chain. The energy current is related to one of the non-trivial conserved quantities underlying integrability and therefore both the diagonal and off diagonal dynamical correlations of spin and energy current diverge. The energy-energy and spin-energy current correlations at finite temperatures are exactly calculated by a lattice path integral formulation. The low-temperature behavior of the thermomagnetic (magnetic Seebeck) coefficient is also discussed. Due to effects of strong correlations, we observe the magnetic Seebeck coefficient changes sign at certain interaction strengths and magnetic fields.Comment: 4 pages, references added, typos corrected, Conference proceedings of SPQS 2004, Sendai, Japa

    Magnon Heat Transport in doped La2CuO4\rm La_2CuO_4

    Full text link
    We present results of the thermal conductivity of La2CuO4\rm La_2CuO_4 and La1.8Eu0.2CuO4\rm La_{1.8}Eu_{0.2}CuO_4 single-crystals which represent model systems for the two-dimensional spin-1/2 Heisenberg antiferromagnet on a square lattice. We find large anisotropies of the thermal conductivity, which are explained in terms of two-dimensional heat conduction by magnons within the CuO2_2 planes. Non-magnetic Zn substituted for Cu gradually suppresses this magnon thermal conductivity κmag\kappa_{\mathrm{mag}}. A semiclassical analysis of κmag\kappa_{\mathrm{mag}} is shown to yield a magnon mean free path which scales linearly with the reciprocal concentration of Zn-ions.Comment: 4 pages, 3 figure

    Thermomagnetic Power and Figure of Merit for Spin-1/2 Heisenberg Chain

    Full text link
    Transport properties in the presence of magnetic fields are numerically studied for the spin-1/2 Heisenberg XXZ chain. The breakdown of the spin-reversal symmetry due to the magnetic field induces the magnetothermal effect. In analogy with the thermoelectric effect in electron systems, the thermomagnetic power (magnetic Seebeck coefficient) is provided, and is numerically evaluated by the exact diagonalization for wide ranges of temperatures and various magnetic fields. For the antiferromagnetic regime, we find the magnetic Seebeck coefficient changes sign at certain temperatures, which is interpreted as an effect of strong correlations. We also compute the thermomagnetic figure of merit determining the efficiency of the thermomagnetic devices for cooling or power generation.Comment: 8 page

    Transport through quantum dots: A combined DMRG and cluster-embedding study

    Full text link
    The numerical analysis of strongly interacting nanostructures requires powerful techniques. Recently developed methods, such as the time-dependent density matrix renormalization group (tDMRG) approach or the embedded-cluster approximation (ECA), rely on the numerical solution of clusters of finite size. For the interpretation of numerical results, it is therefore crucial to understand finite-size effects in detail. In this work, we present a careful finite-size analysis for the examples of one quantum dot, as well as three serially connected quantum dots. Depending on odd-even effects, physically quite different results may emerge from clusters that do not differ much in their size. We provide a solution to a recent controversy over results obtained with ECA for three quantum dots. In particular, using the optimum clusters discussed in this paper, the parameter range in which ECA can reliably be applied is increased, as we show for the case of three quantum dots. As a practical procedure, we propose that a comparison of results for static quantities against those of quasi-exact methods, such as the ground-state density matrix renormalization group (DMRG) method or exact diagonalization, serves to identify the optimum cluster type. In the examples studied here, we find that to observe signatures of the Kondo effect in finite systems, the best clusters involving dots and leads must have a total z-component of the spin equal to zero.Comment: 16 pages, 14 figures, revised version to appear in Eur. Phys. J. B, additional reference

    Bond-impurity induced bound states in disordered spin-1/2 ladders

    Full text link
    We discuss the effect of weak bond-disorder in two-leg spin ladders on the dispersion relation of the elementary triplet excitations with a particular focus on the appearance of bound states in the spin gap. Both the cases of modified exchange couplings on the rungs and the legs of the ladder are analyzed. Based on a projection on the single-triplet subspace, the single-impurity and small cluster problems are treated analytically in the strong-coupling limit. Numerically, we study the problem of a single impurity in a spin ladder by exact diagonalization to obtain the low-lying excitations. At finite concentrations and to leading order in the inter-rung coupling, we compare the spectra obtained from numerical diagonalization of large systems within the single-triplet subspace with the results of diagrammatic techniques, namely low-concentration and coherent-potential approximations. The contribution of small impurity clusters to the density of states is also discussed.Comment: 9 pages REVTeX4 including 7 figures, final version; Fig. 5 modifie

    Local Policy Search in a Convex Space and Conservative Policy Iteration as Boosted Policy Search

    Get PDF
    International audienceLocal Policy Search is a popular reinforcement learning approach for handling large state spaces. Formally, it searches locally in a parameterized policy space in order to maximize the associated value function averaged over some pre-defined distribution. The best one can hope in general from such an approach is to get a local optimum of this criterion. The first contribution of this article is the following surprising result: if the policy space is convex, any (approximate) local optimum enjoys a global performance guarantee. Unfortunately, the convexity assumption is strong: it is not satisfied by commonly used parameterizations and designing a parameterization that induces this property seems hard. A natural so-lution to alleviate this issue consists in deriving an algorithm that solves the local policy search problem using a boosting approach (constrained to the convex hull of the policy space). The resulting algorithm turns out to be a slight generalization of conservative policy iteration; thus, our second contribution is to highlight an original connection between local policy search and approximate dynamic pro-gramming

    A Novel Approach to Study Highly Correlated Nanostructures: The Logarithmic Discretization Embedded Cluster Approximation

    Full text link
    This work proposes a new approach to study transport properties of highly correlated local structures. The method, dubbed the Logarithmic Discretization Embedded Cluster Approximation (LDECA), consists of diagonalizing a finite cluster containing the many-body terms of the Hamiltonian and embedding it into the rest of the system, combined with Wilson's idea of a logarithmic discretization of the representation of the Hamiltonian. The physics associated with both one embedded dot and a double-dot side-coupled to leads is discussed in detail. In the former case, the results perfectly agree with Bethe ansatz data, while in the latter, the physics obtained is framed in the conceptual background of a two-stage Kondo problem. A many-body formalism provides a solid theoretical foundation to the method. We argue that LDECA is well suited to study complicated problems such as transport through molecules or quantum dot structures with complex ground states.Comment: 17 pages, 13 figure

    Thermodyamic bounds on Drude weights in terms of almost-conserved quantities

    Full text link
    We consider one-dimensional translationally invariant quantum spin (or fermionic) lattices and prove a Mazur-type inequality bounding the time-averaged thermodynamic limit of a finite-temperature expectation of a spatio-temporal autocorrelation function of a local observable in terms of quasi-local conservation laws with open boundary conditions. Namely, the commutator between the Hamiltonian and the conservation law of a finite chain may result in boundary terms only. No reference to techniques used in Suzuki's proof of Mazur bound is made (which strictly applies only to finite-size systems with exact conservation laws), but Lieb-Robinson bounds and exponential clustering theorems of quasi-local C^* quantum spin algebras are invoked instead. Our result has an important application in the transport theory of quantum spin chains, in particular it provides rigorous non-trivial examples of positive finite-temperature spin Drude weight in the anisotropic Heisenberg XXZ spin 1/2 chain [Phys. Rev. Lett. 106, 217206 (2011)].Comment: version as accepted by Communications in Mathematical Physics (22 pages with 2 pdf-figures

    Thermal conductivity of anisotropic and frustrated spin-1/2 chains

    Get PDF
    We analyze the thermal conductivity of anisotropic and frustrated spin-1/2 chains using analytical and numerical techniques. This includes mean-field theory based on the Jordan-Wigner transformation, bosonization, and exact diagonalization of systems with N<=18 sites. We present results for the temperature dependence of the zero-frequency weight of the conductivity for several values of the anisotropy \Delta. In the gapless regime, we show that the mean-field theory compares well to known results and that the low-temperature limit is correctly described by bosonization. In the antiferromagnetic and ferromagnetic gapped regime, we analyze the temperature dependence of the thermal conductivity numerically. The convergence of the finite-size data is remarkably good in the ferromagnetic case. Finally, we apply our numerical method and mean-field theory to the frustrated chain where we find a good agreement of these two approaches on finite systems. Our numerical data do not yield evidence for a diverging thermal conductivity in the thermodynamic limit in case of the antiferromagnetic gapped regime of the frustrated chain.Comment: 4 pages REVTeX4 including 6 figures; published version, main modification: added emphasis that the data of our Fig. 3 point to a vanishing of the thermal Drude weight in the thermodynamic limit in this cas
    corecore