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We analyze the thermal conductivity of anisotropic and frustrated spin-1/2 chains using analytical and
numerical techniques. This includes mean-field theory based on the Jordan-Wigner transformation, bosoniza-
tion, and exact diagonalization of systems with N<18 sites. We present results for the temperature dependence
of the zero-frequency weight of the conductivity for several values of the anisotropy D. In the gapless regime,
we show that the mean-field theory compares well to known results and that the low-temperature limit is
correctly described by bosonization. In the antiferromagnetic and ferromagnetic gapped regime, we analyze the
temperature dependence of the thermal conductivity numerically. The convergence of the finite-size data is
remarkably good in the ferromagnetic case. Finally, we apply our numerical method and mean-field theory to
the frustrated chain where we find a good agreement of these two approaches on finite systems. Our numerical
data do not yield evidence for a diverging thermal conductivity in the thermodynamic limit in case of the
antiferromagnetic gapped regime of the frustrated chain.

DOI: 10.1103/PhysRevB.66.140406 PACS number~s!: 75.10.Jm, 74.25.Fy, 75.40.Mg
Introduction. Transport properties of low-dimensional
spin systems have attracted recently interest from both the
experimental and theoretical side. A particular motivation
comes from the observation that magnetic excitations of
one-dimensional spin systems significantly contribute to
the thermal conductivity which is manifest in many experi-
ments on materials such as the spin-ladder system1–3

~Sr,La,Ca!14Cu24O41 and the spin-chain compounds SrCuO2
and Sr2CuO3.4 Assuming elementary excitations to carry
the thermal current and using a relaxation time ansatz for
their kinetic equation one finds extremely large mean-free
paths being, for example, of the order of 1000 Å in
La5Ca9Cu24O41 .2 Although the magnitude of the mean-free
path is currently an issue of intense discussion, the question
arises whether heat transport in low-dimensional spin sys-
tems is ballistic, i.e., whether intrinsic scattering of magnetic
excitations is ineffective to render the thermal conductivity
finite. From the theoretical point of view this issue is related
to the value of the so-called ~thermal! Drude weight5 D th
which is the zero-frequency weight of the thermal conduc-
tivity k. A nonzero value of D th corresponds to a diverging
thermal conductivity. This scenario is trivially realized if the
energy-current operator is a conserved quantity, which is the
case for the spin-1/2 Heisenberg chain.6,5 For a number of
other models like the frustrated chain, the dimerized chains
or the spin-ladder the energy-current operator is not con-
served and the question of nonzero D th is a challenging topic.

In this paper, we establish various numerical and analyti-
cal techniques to analyze the thermal Drude weight and to
compute the temperature dependence of D th(T). We study
the model Hamiltonian H5( lhl with the local energy-
density given by

hl5J$~Sl
1Sl11

2 1H.c.!/21DSl
zSl11

z 1aSW l•SW l12%. ~1!

The XXZ model ~a50! is integrable whereas for non-
zero frustration the model becomes nonintegrable. Recently,
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Klümper and Sakai7 obtained D th(T) for a50 and 0<D<1
by using the Bethe ansatz8 which allows us to test our ap-
proaches in this regime. Exact diagonalization of finite sys-
tems up to N514 sites has been applied by Alvarez and
Gros9 to investigate D th(T) for the isotropic Heisenberg
chain ~i.e., D51!, the frustrated chain, and the spin ladder.
Our numerical analysis goes beyond this by allowing DÞ1
and extension to larger systems with N<18 sites.

Thermal conductivity. The thermal conductivity k is
defined by ^ j&52k¹T and is given by the following
expression:10

k~v!5bE
0

`

dt e2ivtE
0

b

dt^ j~2t2it! j&. ~2!

j is the energy-current operator11 and b51/T is the inverse
temperature. The current operator satisfies the equation of
continuity: ] thl5i@H ,hl#52( j l112 j l). For exchange in-
teraction of arbitrary range, i.e., @hl6m ,hl#Þ0 for m<m0,
this implies

j l5i (
m ,n50

m021

@hl2m21 ,hl1n# . ~3!

In our case we have m052 @see Eq. ~1!# leading to

j5(
l

j l5i(
l

@hl221hl21 ,hl1hl11# . ~4!

Note that the current operator derived from Eq. ~4! includes
the proper limiting form for a@1 where one recovers the
current operators of two decoupled chains.

The conductivity k~v! may be decomposed according to
Re k(v)5D th(T) d(v)1k reg(v) into a singular part at zero
frequency and a regular part k reg(v). The quantity of interest
is the thermal Drude weight D th(T) which can be computed
via ~see, e.g., Ref. 5!
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D th~T !5
pb2

Z N (
m ,n

Em5En

e2bEmu^mu j un&u2. ~5!

Z is the partition function and N the number of lattice sites.
Note that we exclusively use periodic boundary conditions.
If j is a conserved quantity, the conductivity reduces to
k(v)5D th(T)d(v) and expression ~5! simplifies to D th
5pb2^ j2&/N .

Mean-field theory. Using a Jordan-Wigner
transformation10 the spin operators are mapped to spinless
fermionic operators cl

(†) . In the case of D50 and zero frus-
tration a the corresponding Hamiltonian is diagonal in mo-
mentum space and reads H5(kekck

†ck with a tight-binding
dispersion ek52J cos(k). A nonzero value of D or a leads to
a four-fermion interaction term that can be treated approxi-
mately by Hartree-Fock ~for details, see, e.g., Ref. 12!, re-
sulting in a renormalization of ek to ẽk52J„112A(D

22a)…cos(k). The parameter A5(1/p)*0
pdk cos(k)f(ẽk) has

to be determined self-consistently where f (e)51/@exp(be)
11# is the Fermi function. Using Eq. ~5! the thermal conduc-
tivity k(v)5D th(T)d(v) can be computed directly. Here we
focus on the case of 0<D<1 and a,acrit ,13 which is known
to exhibit gapless spinonlike excitations. Results for D th(T)
of the XXZ model are shown in Fig. 1 ~thick dashed lines!.
For comparison Bethe-ansatz results7 are included in the fig-
ure ~solid lines!. In the case of D50, no approximations are
necessary in the Jordan-Wigner approach and consequently,
Jordan-Wigner and Bethe-ansatz results are identical. For
D.0, the main observation is that the mean-field theory pro-
duces qualitatively the right picture of the temperature de-
pendence of D th(T). Both the slope of D th;T at low tem-
peratures and the position of the maximum are well
predicted. Deviations at high temperatures are due to the
neglect of many-particle excitations in the mean-field ap-
proximation.

FIG. 1. D th(T) for different values of the anisotropy D51,0.5,0
~top to bottom! and zero frustration. Dashed lines denote results
obtained by Jordan-Wigner transformation and mean-field treatment
of the interaction term. Bethe-ansatz results from Ref. 7 are in-
cluded in the figure ~thick solid lines!. Thin dashed lines show the
exact result for the low-temperature limit @see Eq. ~9!#.
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Bosonization. In the continuum limit the physics of the
anisotropic spin-1/2 chain at low energies is described by the
Luttinger-liquid Hamiltonian14

H5
1
2E dxS vK~]xQ!21

v
K ~]xf!2D , ~6!

where f is a bosonic field in 111 dimensions and Q is the
dual field ]xQ5(1/K)]tf . K is the Luttinger parameter and
v5(Jp/2)sin g/g is the spinon velocity where the anisotropy
is parametrized via D5cos~g! here. The local current opera-
tor j(x) is again given by the equation of continuity:
]x j(x)52] th(x). We obtain

j5v2E dx ]xf~x !]xQ~x !. ~7!

The Drude weight follows from D th5pb2^ j2&/N . Thus
we have to evaluate the two-point function ^ j(x ,t) j(0,0)&,
t being the time variable. The computation is similar to
the procedure for the susceptibility in Ref. 15. We change
to coordinates z5vt1ix and z̄5vt2ix . By decomposing
f(z , z̄)5w(z)1w̄( z̄) into its chiral parts and using the
respective two-point functions such as ^w(z)w(w)&
52(K/4p)ln(z2w) we obtain

^ j~x ,t! j~0,0!&522
v2

~4p!2 S 1

z4 1
1

z̄4D . ~8!

Before performing the space integration the imaginary time
direction is compactified by mapping the plane ~z! into the
strip ~z! using z(z)5exp(2pz/b) leading to the replacement
vt6ix→(vb/p)sin@p(vt6ix)/vb# in Eq. ~8!. After the
change of variables u5tan(pt/b);w52i tan@ ipx/(vb)#
we finally find

D th~T !5
p2

3 v T . ~9!

This coincides with Klümper’s and Sakai’s analytic
expression7 for the low-temperature limit of the XXZ model
if the velocity v is equal to v5(Jp/2)sin g/g. However, the
result is more generally valid for models with the continuum
limit given by the Luttinger-liquid Hamiltonian.

Exact diagonalization (ED). In this part we present our
results for D th(T) obtained by exact diagonalization for finite
systems with N<18. We start with the discussion of differ-
ent values of the anisotropy D at zero frustration. Figure 2
shows D th for the isotropic case D51, for a gapped, antifer-
romagnetic system ~D510! and in the ferromagnetic regime
~D521,22!. While we show in Fig. 2~a! that we reproduce
the results by Alvarez and Gros9 for system sizes of N
<14, our analysis extends this case to N<18. This is due to
exploiting both conservation of total Sz and momentum k in
the exact diagonalization. By comparing with the curve ob-
tained from the Bethe ansatz7 @solid line in Fig. 2~a!# it can
be seen that for a system of N518 sites the thermodynamic
limit is reached for temperatures around T*0.3J for D51.
At low temperatures D th(T) is exponentially suppressed due
to the finite-size gap in the case of an even number of sites
6-2



RAPID COMMUNICATIONS

THERMAL CONDUCTIVITY OF ANISOTROPIC AND . . . PHYSICAL REVIEW B 66, 140406~R! ~2002!
FIG. 2. Exact diagonalization ~ED! for the XXZ chain: ~a!
Isotropic chain (D51). Dashed ~dotted! lines denote even-
~odd-! numbered systems for N<18 sites. Bethe-ansatz results
by Klümper and Sakai ~Ref. 7! are included in the plot ~thick
solid line!. Thin solid lines show ED results by Alvarez and
Gros ~Ref. 9! for N58,10,12,14. ~b! Antiferromagnetic, gapped
regime ~D510!. ED for N58, . . . ,16 ~dashed lines!, N518
~solid line!. ~c! Ferromagnetic regime ~D521,22!. Note: the
thermodynamic limit is reached for N'17. The insets of ~b!
and ~c! display the exponential suppression of D th(T) at low
temperatures for D510 and D522 ~in the insets, vertical
axes are scaled logarithmically, horizontal axes reciprocally!.
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and divergent for an odd number. The latter is due to the
degeneracy of the ground state in case of odd-numbered sys-
tems.

For the gapped, antiferromagnetic case we choose D510,
shown in Fig. 2~b!, where the finite-size effects of the two-
spinon gap are small. The data for D th are convergent for T
*3J , but substantial finite-size effects are still present in the
vicinity of the maximum, i.e., at small temperatures com-
pared to the two-spinon gap 8.055126J .16 At low tempera-
tures the thermal Drude-weight D th(T) is expected to be ex-
ponentially suppressed in the thermodynamic limit. In the
inset of Fig. 2~b! D th(T) is plotted logarithmically versus
1/T . If one fits D th(T);exp(2d/T) to the numerical data at
low temperatures17 one finds d58.056J for N518 sites with
similar values of d found for other N. This compares well to
the two-spinon gap.16 Hence we conclude that mainly the
elementary excitations contribute to the thermal conductivity
at low temperatures.

In the ferromagnetic regime ~D<21! @results are shown
for D521 and D522 in Fig. 2~c!# our main observation is
that convergence with N is very good at all temperatures. For
example, we find for D522 that the relative difference be-
tween the finite-size data for N516 sites and N517 is neg-
ligibly small, namely uD th

N517(T)2D th
N516(T)u/D th

N517(T)
,0.008 for T.0.05J . If one extracts d from a fit of
D th(T);exp(2d/T) to the numerical data17 for D522, we
find d'0.97J which coincides with the one-triplet gap
2(D11)J that can easily be obtained from a spin-wave
computation. The fast convergence is even more remarkable
for the case D521 where the numerical data is consistent
with D th(T);T at low temperatures. In addition, there is no
qualitative difference between even- and odd-numbered sys-
tems due to the ferromagnetic nature of the interaction for
D<21.

Frustrated chain. Now we turn to the case of nonzero
frustration. Since @H , j #Þ0 here, care has to be taken about
off-diagonal matrix-elements of j if degeneracies occur.
However, since we use classification by momentum k and Sz

degeneracies are lifted and do not play a crucial role. In Fig.
3 we show D th(T) obtained numerically from Eqs. ~4! and
~5! for even system sizes with N<18 and a50.35, D51. A

FIG. 3. Thermal Drude weight D th(T) for the frustrated chain
with D51,a50.35 for N58, . . . ,18 sites.
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central result of this paper is that, while we observe a finite
Drude weight at temperatures T.0 and all system sizes in-
vestigated, we still find a substantial reduction of the Drude
weight with increasing system size at high T. This is in sharp
contrast to the XXZ model, where finite-size effects are small
at high temperatures @see, e.g., Fig. 2~a!#. These observations
clearly point to a vanishing of the Drude weight in the ther-
modynamic limit for a50.35. However, the question of dis-
sipationless thermal transport at arbitrary a.0 remains to be
studied in more detail.

Finally, we compare our mean-field approach with nu-
merical results on finite systems and with nonzero frustra-
tion. In Fig. 4 we present the thermal Drude weight of sys-
tems with N516 sites for a50, 0.05, 0.15 and D51, i.e., in
the gapless regime. As is obvious from this figure, there is a
good agreement between ED and the mean-field approach

FIG. 4. Comparison between exact diagonalization ~solid lines!
and mean-field approximation ~dashed lines! on finite systems with
N516 sites for various values of a50, 0.05, 0.15 ~top to bottom!
and D51.
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regarding the temperature dependence of the thermal Drude
weight. The general features of D th(T) are a reduction of the
absolute value of D th on increasing a, a shift of the position
of the maximum to lower temperatures and thus a crossing of
the curves for different a at low temperatures which are
present in both the ED and mean-field results. Deviations at
high temperatures are again understandable due to the ne-
glect of many-particle excitations in the effective one-
particle picture.

Conclusion. We performed a detailed analysis of the ther-
mal Drude weight for anisotropic and frustrated spin-1/2
Heisenberg chains by using mean-field theory, bosonization,
and ED. In the case of the XXZ model we demonstrated the
applicability of these techniques for computing the tempera-
ture dependence of the thermal Drude weight. Using ED we
obtained results on finite systems of N<18 sites for arbitrary
values of the anisotropy D. In the ferromagnetic regime
~D<21! of the XXZ chain the numerical data converge to
the thermodynamic limit at arbitrary temperature for moder-
ately small system sizes (N'18). The analytical results
compare well with the Bethe ansatz7 in the gapless regime of
the XXZ model and to our numerics in the case of the frus-
trated chain on finite systems. Our numerical data at a50.35
mark a clear difference between the integrable XXZ case and
the nonintegrable one at a50.35: while in the former case
the Drude weight remains finite in the thermodynamic limit
we have clear indications for a vanishing Drude weight at
high temperatures in the latter case. Extended analysis of
these findings for frustrated and dimerized chains and spin
ladders will be the subject of a forthcoming paper.
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~1997!.

6 Th. Niemeijer and H.A.W. van Vianen, Phys. Lett. 34A, 401
~1971!.
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