535 research outputs found

    An \u3cem\u3em\u3c/em\u3e-Carboranedicarboxylic Acid Dianilide

    Get PDF
    The crystal structure of the \u27non hydrogen-bonded\u27 (according to IR data) polymorph of 1,7-bis(phenylcarbamoyl)-1,7-dicarba-closo-dodecaborane(12), C16-H22B10N2O2, has been determined. The two phenylamide groups have a Z configuration [the torsion angles 0-C-N-C are -2.3 (5) and -3.0 (5)°]. As a result both \u27active\u27 protons of these groups are almost completely shielded by other H atoms of the neighbouring carborane nucleus and phenyl substituents, and, therefore, no hydrogen-bonding contacts are found

    Tectonics and volcanisms of Mars

    Get PDF
    Televised images of Mars transmitted from interplanetary stations are used to develop a theory of the structure and development of the planet. Crater chronology, the structure of planetary bodies in the Earth group, and a comparison of the Earth planetary bodies are among the factors included

    Comment on "Effects of spatial dispersion on electromagnetic surface modes and on modes associated with a gap between two half spaces"

    Full text link
    Recently Bo E. Sernelius [Phys. Rev. B {\bf 71}, 235114 (2005)] investigated the effects of spatial dispersion on the thermal Casimir force between two metal half spaces. He claims that incorporating spatial dispersion results in a negligible contribution from the transverse electric mode at zero frequency as compared to the transverse magnetic mode. We demonstrate that this conclusion is not reliable because, when applied to the Casimir effect, the approximate description of spatial dispersion used is unjustified.Comment: 9 pages, minor corrections in accordance with the journal publication have been mad

    Title Stabilization of Membrane Pores by Packing

    Full text link
    We present a model for pore stabilization in membranes without surface tension. Whereas an isolated pore is always unstable (since it either shrinks tending to re-seal or grows without bound til to membrane disintegration), it is shown that excluded volume interactions in a system of many pores can stabilize individual pores of a given size in a certain range of model parameters. For such a multipore membrane system, the distribution of pore size and associated pore lifetime are calculated within the mean field approximation. We predict that, above certain temperature when the effective line tension becomes negative, the membrane exhibits a dynamic sieve-like porous structure.Comment: 4 pages, 4 figure

    Dynamic Fluctuation Phenomena in Double Membrane Films

    Full text link
    Dynamics of double membrane films is investigated in the long-wavelength limit including the overdamped squeezing mode. We demonstrate that thermal fluctuations essentially modify the character of the mode due to its nonlinear coupling to the transversal shear hydrodynamic mode. The corresponding Green function acquires as a function of the frequency a cut along the imaginary semi-axis. Fluctuations lead to increasing the attenuation of the squeezing mode it becomes larger than the `bare' value.Comment: 7 pages, Revte

    Optical Study of GaAs quantum dots embedded into AlGaAs nanowires

    Full text link
    We report on the photoluminescence characterization of GaAs quantum dots embedded into AlGaAs nano-wires. Time integrated and time resolved photoluminescence measurements from both an array and a single quantum dot/nano-wire are reported. The influence of the diameter sizes distribution is evidenced in the optical spectroscopy data together with the presence of various crystalline phases in the AlGaAs nanowires.Comment: 5 page, 5 figure

    Relativistic Turbulence: A Long Way from Preheating to Equilibrium

    Get PDF
    We study, both numerically and analytically, the development of equilibrium after preheating. We show that the process is characterised by the appearance of Kolmogorov spectra and the evolution towards thermal equilibrium follows self-similar dynamics. Simplified kinetic theory gives values for all characteristic exponents which are close to what is observed in lattice simulations. The resulting time for thermalization is long, and temperature at thermalization is low, T100T \sim 100 eV in the simple λΦ4\lambda \Phi^4 inflationary model. Our results allow a straightforward generalization to realistic models.Comment: 4 pages, 3figures, LaTe

    Accretion Disk Instabilities, CDM models and their role in Quasar Evolution

    Get PDF
    We have developed a consistent analytical model to describe the observed evolution of the quasar luminosity function. Our model combines black hole mass distributions based on the Press - Schechter theory of the structure formation in the Universe with quasar luminosity functions resulting from a physics-based emission model that takes into account the time-dependent phenomena occurring in the accretion disks. Quasar evolution and CDM models are mutually constraining, therefore our model gives an estimation of the exponent, n, of the power spectrum, P(k), which is found to be -1.8 < n < -1.6. We were able to reject a generally assumed hypothesis of a constant ratio between Dark Matter Halo and the Black Hole mass, since the observed data could not be fitted under this assumption. We found that the relation between the Dark Matter Halos and Black Hole masses is better described by M_{BH}=M_{DMH}^{0.668}. This model provides a reasonable fit to the observed quasar luminosity function at redshifts higher than ~2.0. We suggest that the disagreement at lower redshift is due to mergers. Based on the agreement at high redshift, we estimated the merger rate at lower redshift, and argue that this rate should depend on the redshift, like (1+z)^3.Comment: 15 pages, 18 figures, Accepted for Publication in Ap

    Electromagnon excitations in modulated multiferroics

    Full text link
    The phenomenological theory of ferroelectricity in spiral magnets presented in [M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006)] is generalized to describe consistently states with both uniform and modulated-in-space ferroelectric polarizations. A key point in this description is the symmetric part of the magnetoelectric coupling since, although being irrelevant for the uniform component, it plays an essential role for the non-uniform part of the polarization. We illustrate this importance in generic examples of modulated magnetic systems: longitudinal and transverse spin-density wave states and planar cycloidal phase. We show that even in the cases with no uniform ferroelectricity induced, polarization correlation functions follow to the soft magnetic behavior of the system due to the magnetoelectric effect. Our results can be easily generalized for more complicated types of magnetic ordering, and the applications may concern various natural and artificial systems in condensed matter physics (e.g., magnon properties could be extracted from dynamic dielectric response measurements).Comment: 5 page

    Surface Screening in the Casimir Force

    Full text link
    We calculate the corrections to the Casimir force between two metals due to the spatial dispersion of their response functions. We employ model-independent expressions for the force in terms of the optical coefficients. We express the non-local corrections to the Fresnel coefficients employing the surface dd_\perp parameter, which accounts for the distribution of the surface screening charge. Within a self-consistent jellium calculation, spatial dispersion increases the Casimir force significatively for small separations. The nonlocal correction has the opposite sign than previously predicted employing hydrodynamic models and assuming abruptly terminated surfaces.Comment: 5 pages, 2 figure
    corecore