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We study, both numerically and analytically, the development of equilibrium after preheating. We
show that the process is characterised by the appearance of Kolmogorov spectra and the evolution
towards thermal equilibrium follows self-similar dynamics. Simplified kinetic theory gives values for
all characteristic exponents which are close to what is observed in lattice simulations. The resulting
time for thermalization is long, and temperature at thermalization is low, T ∼ 100 eV in the simple
λΦ4 inflationary model. Our results allow a straightforward generalization to realistic models.

Introduction. The dynamics of equilibration and
thermalization of field theories is of interest for various
reasons. In high-energy physics understanding of these
processes is crucial for applications to heavy ion collisions
and to reheating of the early universe after inflation. In-
flation solves the flatness and the horizon problems of
the standard big bang cosmology and provides a calcu-
lable mechanism by which initial density perturbations
were generated [1]. At the end of inflation the Universe
was in a vacuum-like state. In the process of decay of
this state and subsequent thermalization (reheating) the
matter content of the universe is created. It was realized
recently that the initial stage of reheating, dubbed pre-
heating [2], is a fast, explosive process. This initial stage
by now is well understood [3–7]. Strong and fast ampli-
fication of fluctuation fields at low momenta may lead
to various interesting physical effects, like non-thermal
phase transitions [8], peculiar baryogenesis [9], genera-
tion of high-frequency gravitational waves [10], etc.

Understanding of the subsequent stages of reheating
and thermalization processes and calculation of the final
equilibrium temperature is important for various appli-
cations, most notably baryogenesis and the problem of
over-abundant gravitino production in supergravity mod-
els [11]. Thermalization of field theories was discussed
already, see e.g. Refs. [12]. However, at present the pro-
cess of thermalization after preheating is still far away
from being well understood and developed. The problem
is that at the preheating stage the occupation numbers
are very large, of order of the inverse coupling constant.
In addition, in many models the zero mode does not de-
cay completely. Therefore, a simple kinetic approach is
not applicable.

Fortunately, the description in terms of classical field
theory is valid in this situation [3], and the process of
preheating, as well as subsequent thermalization, can be
studied on a lattice. In this paper we adopt this ap-

proach. Our goal is to integrate the system on a lattice
sufficiently accurately and sufficiently far in time to be
able to see generic features, and possibly to the stage, at
which the kinetic description becomes a good approxima-
tion scheme. Lattice studies of thermalization, similar to
ours, were done in Ref. [13]. Several generic rules of ther-
malization were formulated, like the early equipartition of
energy between coupled fields. However, the problem is
very complicated and there are other unanswered impor-
tant questions like what is the final thermalization tem-
perature, at what stage the kinetic description becomes
valid, what is the functional form of particle distributions
during the thermalization stage, etc.

For our study we use a higher accuracy, improved ver-
sion of the LATTICEEASY code [14]. We show that the
distribution functions follow a self-similar evolution re-
lated to the turbulent transport of wave energy. This
property enables us to estimate the physical reheating
temperature, which turns out to be very low. The con-
cept should be rather model independent since typical
ranges of particle momenta at preheating and in ther-
mal equilibrium are widely separated. However, in this
letter we will restrict our numerical integration (but not
the discussion) to the “minimal” inflationary model, the
massless λΦ4-theory.

The Model. With conformal coupling to gravity and
after a rescaling of the field, ϕ ≡ Φa, where a(t) is the
cosmological scale factor, the equation of motion in co-
moving coordinates describes a ϕ4-theory in Minkowski
space-time,

2ϕ + λϕ3 = 0. (1)

At the end of inflation the field is homogeneous, ϕ =
ϕ0(t). Later on fluctuations develop, but the homoge-
neous component of the field, which corresponds to the
zero momentum in the Fourier decomposition, may be
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dynamically important and is referred to as the “zero-
mode.” In such situations it is convenient to make a
further rescaling of the field, φ ≡ ϕ/ϕ0(t0), and of the
space-time coordinates, xµ → √

λϕ0(t0)xµ, which trans-
forms the equation of motion (1) into dimensionless and
parameter free form,

2φ + φ3 = 0 . (2)

Here t0 corresponds to the initial moment of time (end
of inflation), and in what follows we denote dimension-
less time as τ . With this rescaling the initial condition
for the zero-mode oscillations is φ0(τ0) = 1. All model
dependence on the coupling constant λ and on the ini-
tial amplitude of the field oscillations now is encoded in
the initial conditions for the small (vacuum) fluctuations
of the field with non-zero momenta [3]. The physical
normalization of the inflationary model corresponds to a
dimensionful initial amplitude of ϕ0(t0) ≈ 0.3MPl and a
coupling constant λ ∼ 10−13 [1]. The re-parametrization
property of the system allows to chose a larger value of
λ for numerical simulations. We have used λ = 10−8.

Numerical Procedure and Results. We use a 3-D cubic
lattice with periodic boundary conditions. The finite-
differences scheme that was used is 2nd order in time and
4-th order in space. The results displayed here are taken
from a simulation with 2563 sites and a physical box size
L = 14π. With this box size the infrared modes which
belong to the resonance band are still well represented,
while the ultraviolet lattice cut-off is sufficiently far away
from the occupied modes, such that the particle spectra
are not distorted even at late times. We have studied the
dependence of our results on the lattice- and the box size
to avoid lattice artifacts. Various quantities are measured
and monitored both in configuration space (zero mode,
φ0 ≡ 〈φ〉, and the variance, var(φ) ≡ 〈φ2〉 − φ2

0) and
in the Fourier space. Using fourier transformed fields
we first define the wave amplitudes (which correspond to
annihilation operators in the quantum problem),

a(~k) ≡ ωkφ~k + iφ̇~k

(2π)3/2
√

2ωk
. (3)

The effective frequency ωk ≡
√

k2
D + m2

eff is determined

by the effective mass m2
eff = 3λ〈φ2〉 and the inverse k2

D

of the lattice Laplacian. In our numerical scheme the
latter is given by

k2
D = b−2

∑
i∈{1,2,3}

(
5
2
− 8

3
cos(bki) +

1
6

cos(2bki)
)

. (4)

Here b = 2π/L = 1/7 is the lattice constant. Making
use of ak, we calculate various correlators, n(k) ≡ 〈a†a〉,
σ(k) ≡ 〈aa〉, 〈a†a†aa〉, etc. The first one, which corre-
sponds to the particle occupation numbers, is of prime
interest.
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FIG. 1. Amplitude of the zero-mode oscillations, φ
2

0, and
variance of the field fluctuations as functions of time τ .
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FIG. 2. Occupation numbers as function of kφ
−1

0 at
τ = 100, 400, 2500, 5000, 10000.

We begin the discussion of our numerical results with
the evolution of the zero-mode and the variance of the
field, which are shown in Fig. 1. Initially we see an
exponentially fast transfer of the zero-mode energy into
fluctuations during preheating (up to τ ∼ 300). It is fol-
lowed by a long and slow relaxation phase. In this regime
(τ > 1500) the amplitude of the zero mode oscillations
decreases according to ∼ τ−1/3, the variance of the field
(averaged over high-frequency oscillations) drops accord-
ing to ∼ τ−2/5. This is consistent with previous results
[3]. In addition we find that in this regime the zero-mode
is in a non-trivial dynamical equilibrium with the bath
of highly occupied modes: when the zero-mode is artifi-
cially removed, it is recreated on a short time-scale (Bose
condensation).

At early times the distribution functions of particles
over momenta, see Fig. 2, have peaky structure. The
first peak which corresponds to the parametric resonance
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is initially at the theoretically predicted value of k ∼ 1.27
[5]. Later (τ > 1500) the spectra become smooth and at
small k approach a power-law, nk ∼ k−s, where s fluctu-
ates in the range of 1.5− 1.7, depending on time and the
range of k where it is fitted. This power law clearly dif-
fers from the the classical thermal equilibrium, nk ∼ ω−1

k .
It is followed by the exponential cut-off, whose position
monotenously shifts with time towards higher k. Pump-
ing of energy from the zero mode stays effective all the
times (note a small bump in the particle distributions in
Fig. 2 at k ∼ 1). It corresponds to the annihilation of
four condensed particles into two quanta. Rescattering
of two particles into two particles is also effective. One
of the two can belong to the zero-mode condensate either
in initial or in the final two particle state. We also can
see in Fig. 2 that in the power-law region nk is a func-
tion of k/φ0 only, where φ0(τ) represents the amplitude
of the zero-mode at time τ . This effect can be related
to the above described dynamical equilibrium between
zero-mode and the bath of particles. Indeed, going from
Eq. (1) to Eq. (2) we can rescale by the current ampli-
tude of the zero-mode.

The picture presented in Fig. 2 at late times resembles
stationary Kolmogorov turbulence. It appears as such
due to rescaling of momenta by the amplitude of the zero-
mode, but in fact in the present model the turbulence can
not be stationary because the amplitude of the zero-mode
(i.e. the strength of the source of turbulence) decreases.
Further examination of Fig 2 suggests that the evolution
of particle spectra may be self-similar. We have tried
therefore the following anzatz

n(k, τ) = τ−qn0(kτ−p) . (5)

Spectra rescaled at several moments of time by the rela-
tion inverse to Eq. (5) are shown in Fig. 3. We have found
that the evolution is indeed self-similar with q ≈ 3.5p and
p ≈ 1/5.

Discussion. Here we discuss the question whether a
simple kinetic theory gives predictions for turbulence and
self-similarity exponents in agreement with the lattice
calculations. Our lattice study of higher order correla-
tors, like 〈a†a†aa〉, shows that the field distribution is
very close to Gaussian, see also [12,13]. This facilitates
the use of the kinetic approach. On the other hand we
have found that the magnitude of σ(k) is of order of a
few percent compared to n(k), and it is even larger in
the region of resonant momenta. This means that the
strict kinetic approach should include σ(k). Nevertheless
we neglect these effects and write a kinetic equation in
a simple form ṅk = Ik, where the collision integral for a
m-particle interaction is given by

Ik =
∫

dΩk Uk F [n] . (6)

In d spatial dimensions the integration measure dΩk is
given by m − 1 integrations over d-dimensional Fourier
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FIG. 3. On the right hand side we plot the wave energy per
decade found in lattice integration. On the left hand side are
the same graphs transformed according to the relation inverse
to Eq. (5).

space. We include in it the energy-momentum conserva-
tion δ-functions. But we do not include there the rela-
tivistic 1/ω(ki) “on-shell” factors, which instead appear
in the “matrix element” of the corresponding process,
Uk. This will make the discussion of relativistic and non-
relativistic cases uniform. The function F [n] is a sum of
products of the type n−1

kj

∏m
i=1 nki , where j ∈ {1, . . . , m}

with appropriate signs and permutations of indices for in-
coming and outgoing particles. All dynamical aspects of
turbulence follow from the scaling properties of the sys-
tem [15]. Let ωk, nk and Uk have defined weights under
a ξ-rescaling of Fourier-space,

ω(ξki) = ξαω(ki) ,

U(ξk1, . . . , ξkm) = ξβU(k1, . . . , km) ,

n(ξki) = ξγn(ki) . (7)

The weight of the full collision integral under this re-
parametrization is

Iξk = ξd(m−2)−α+β+(m−1)γIk . (8)

It follows that the stationary turbulence with constant
energy flux over momentum space is characterised by
a power-law distribution function, nk ∼ k−s, where
s = d + β/(m− 1). The scaling properties also give the
exponents of the self-similar distribution, Eq. (5). As-
suming energy conservation in particles and with ξ = τ−p

we find q = 4p and p = 1/((m− 1)α− β). For stationary
turbulence we find that p should be (m−1) times larger.

For a λφ4-theory in three spatial dimensions and four-
particle interaction we have m = 4, β = −4α and α = 1.
In this case s = 5/3 and p = 1/7. For three-particle
interaction (the fourth particle belongs to the condensate
in this case and the matrix element contains an additional
factor of φ

2

0) we find s = 3/2 and a smaller value for p
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compared to the previous case. We can not distinguish
between 5/3 and 3/2 for s in our numerical integrations,
s rather fluctuates between these two numbers, while 1/7
for p gives a fit to the data not as good as displayed in
Fig. 3. However, during the integration time the energy
in particles is neither conserving, nor there is a stationary
source of energy. Namely, starting from the time at which
the solution becomes self-similar, τ ∼ 3000, to the end of
our integration, the energy influx from the zero mode to
particles is about 20 %. Correcting for this energy influx
we find q ≈ 3.5p and p ≈ 1/6. This should be considered
as satisfactory agreement given the simplifications which
were made.

Equilibration time and temperature. At late times the
influence of the zero-mode should become negligible, but
we still may expect the self-similar character of the evo-
lution. Solution Eq. (5) with p = 1/7 should be valid
in this case. This allows us to find the time needed to
reach equilibrium. Indeed, the classical evolution will
continue until the occupation numbers in the region of
the peak in Fig. 3 will become of order one. At this time
quantum effects become important and the distribution
relaxes to thermal. Values of momenta were this happens
are kmax ∼ λ1/4ϕ0(τ0). On the other hand the initial dis-
tribution is centred around k0 ∼ λ1/2ϕ0(τ0) and moves
to ultraviolet according to Eq. (5) as ∝ k0τ

p. It follows
that the time to reach equilibrium is τ ∼ λ−7/4 ∼ 1023,
where in the second equality we assumed the normaliza-
tion to the inflationary model. For the reheating temper-
ature we find, rotating back from the conformal reference
frame, TR ∼ kmax/a(τ) ∼ λ2ϕ0(t0) ∼ 10−26MPl ∼ 100
eV, where for the conformal scale factor we have used
a(τ) = τ .

Conclusions. Reheating after preheating appears to
be a rather slow process. Although the “effective tem-
perature” measured at low momentum modes during pre-
heating may be high, in the model we have considered the
resulting true temperature is parametrically the same as
what could have been obtained in “naive” perturbation
theory. Namely, equating the rate of scattering in ther-
mal equilibrium to the Hubble expansion rate one ob-
tains T ∼ λ2MPl in this model. We anticipate this result
should be applicable to more realistic models of inflation.
Note that realistic models involve many fields and inter-
actions and larger coupling constants will determine the
true temperature.
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