749 research outputs found

    Description of Double Giant Dipole Resonance within the Phonon Damping Model

    Full text link
    In a recent Letter [1] an overall agreement with the experimental data for the excitation of the single and double giant dipole resonances in relativistic heavy ion collision in 136Xe and 208Pb nuclei has been reported. We point out that this agreement is achieved by a wrong calculation of the DGDR excitation mechanism. We also argue that the agreement with the data for the widths of resonances is achieved by an unrealistically large value of a model parameter. [1] Nguyen Dinh Dang, Vuong Kim Au, and Akito Arima, Phys. Rev. Lett. 85 (2000) 1827.Comment: Comment for Phys. Rev. Let

    Experimental study of the vidicon system for information recording using the wide-gap spark chamber of gamma - telescope gamma-I

    Get PDF
    The development of the gamma ray telescope is investigated. The wide gap spark chambers, used to identify the gamma quanta and to determine the directions of their arrival, are examined. Two systems of information recording with the spark chambers photographic and vidicon system are compared

    Damping width of double resonances

    Get PDF
    Damping width of the double giant dipole resonance of 136Xe excited in relativistic heavy ion collisions is calculated by diagonalizing a microscopic Hamiltonian in a basis containing one-, two- and three-phonon states. The coupling between these states is determined making use of the fermion structure of the phonons. The resulting width of the double giant dipole resonance is close to (31+)\left( {3_1^ + } \right) times the width of the single giant dipole resonance

    Self-adjoint extensions and spectral analysis in Calogero problem

    Full text link
    In this paper, we present a mathematically rigorous quantum-mechanical treatment of a one-dimensional motion of a particle in the Calogero potential αx2\alpha x^{-2}. Although the problem is quite old and well-studied, we believe that our consideration, based on a uniform approach to constructing a correct quantum-mechanical description for systems with singular potentials and/or boundaries, proposed in our previous works, adds some new points to its solution. To demonstrate that a consideration of the Calogero problem requires mathematical accuracy, we discuss some "paradoxes" inherent in the "naive" quantum-mechanical treatment. We study all possible self-adjoint operators (self-adjoint Hamiltonians) associated with a formal differential expression for the Calogero Hamiltonian. In addition, we discuss a spontaneous scale-symmetry breaking associated with self-adjoint extensions. A complete spectral analysis of all self-adjoint Hamiltonians is presented.Comment: 39 page

    The Path Integral Quantization And The Construction Of The S-matrix In The Abelian And Non-Abelian Chern-Simons Theories

    Full text link
    The cvariant path integral quantization of the theory of the scalar and spinor particles interacting through the abelian and non-Abelian Chern-Simons gauge fields is carried out and is shown to be mathematically ill defined due to the absence of the transverse components of these gauge fields. This is remedied by the introduction of the Maxwell or the Maxwell-type (in the non-Abelian case)term which makes the theory superrenormalizable and guarantees its gauge-invariant regularization and renormalization. The generating functionals are constructed and shown to be formally the same as those of QED (or QCD) in 2+1 dimensions with the substitution of the Chern-Simons propagator for the photon (gluon) propagator. By constructing the propagator in the general case, the existence of two limits; pure Chern-Simons and QED (QCD) after renormalization is demonstrated. By carrying out carefully the path integral quantization of the non-Abelian Chern-Simons theories using the De Witt-Fadeev-Popov and the Batalin-Fradkin- Vilkovisky methods it is demonstrated that there is no need to quantize the dimensionless charge of the theory. The main reason is that the action in the exponent of the path integral is BRST-invariant which acquires a zero winding number and guarantees the BRST renormalizability of the model. The S-matrix operator is constructed, and starting from this S-matrix operator novel topological unitarity identities are derived that demand the vanishing of the gauge-invariant sum of the imaginary parts of the Feynman diagrams with a given number of intermediate on-shell topological photon lines in each order of perturbation theory. These identities are illustrated by an explicit example.Comment: LaTex file, 31 pages, two figure

    Laser assisted decay of quasistationary states

    Full text link
    The effects of intense electromagnetic fields on the decay of quasistationary states are investigated theoretically. We focus on the parameter regime of strong laser fields and nonlinear effects where an essentially nonperturbative description is required. Our approach is based on the imaginary time method previously introduced in the theory of strong-field ionization. Spectra and total decay rates are presented for a test case and the results are compared with exact numerical calculations. The potential of this method is confirmed by good quantitative agreement with the numerical results.Comment: 24 pages, 5 figure

    Topological solitons in highly anisotropic two dimensional ferromagnets

    Full text link
    e study the solitons, stabilized by spin precession in a classical two--dimensional lattice model of Heisenberg ferromagnets with non-small easy--axis anisotropy. The properties of such solitons are treated both analytically using the continuous model including higher then second powers of magnetization gradients, and numerically for a discrete set of the spins on a square lattice. The dependence of the soliton energy EE on the number of spin deviations (bound magnons) NN is calculated. We have shown that the topological solitons are stable if the number NN exceeds some critical value NcrN_{\rm{cr}}. For N<NcrN < N_{\rm{cr}} and the intermediate values of anisotropy constant Keff<0.35JK_{\mathrm{eff}} <0.35J (JJ is an exchange constant), the soliton properties are similar to those for continuous model; for example, soliton energy is increasing and the precession frequency ω(N) \omega (N) is decreasing monotonously with NN growth. For high enough anisotropy Keff>0.6JK_{\mathrm{eff}} > 0.6 J we found some fundamentally new soliton features absent for continuous models incorporating even the higher powers of magnetization gradients. For high anisotropy, the dependence of soliton energy E(N) on the number of bound magnons become non-monotonic, with the minima at some "magic" numbers of bound magnons. Soliton frequency ω(N)\omega (N) have quite irregular behavior with step-like jumps and negative values of ω\omega for some regions of NN. Near these regions, stable static soliton states, stabilized by the lattice effects, exist.Comment: 17 page
    corecore