4,838 research outputs found

    Cognitive effort modulates connectivity between dorsal anterior cingulate cortex and task-relevant cortical areas

    Get PDF
    Investment of cognitive effort is required in everyday life and has received ample attention in recent neurocognitive frameworks. The neural mechanism of effort investment is thought to be structured hierarchically, with dorsal anterior cingulate cortex (dACC) at the highest level, recruiting task-specific upstream areas. In the current fMRI study, we tested whether dACC is generally active when effort demand is high across tasks with different stimuli, and whether connectivity between dACC and task-specific areas is increased depending on the task requirements and effort level at hand. For that purpose, a perceptual detection task was administered that required male and female human participants to detect either a face or a house in a noisy image. Effort demand was manipulated by adding little (low effort) or much (high effort) noise to the images. Results showed a network of dACC, anterior insula (AI), and intraparietal sulcus (IPS) to be more active when effort demand was high, independent of the performed task (face or house detection). Importantly, effort demand modulated functional connectivity between dACC and face-responsive or house-responsive perceptual areas, depending on the task at hand. This shows that dACC, AI, and IPS constitute a general effort-responsive network and suggests that the neural implementation of cognitive effort involves dACC-initiated sensitization of task-relevant areas

    Shared neural representations of cognitive conflict and negative affect in the dorsal anterior cingulate cortex

    Get PDF
    Influential theories of dorsal anterior cingulate cortex (dACC) function suggest that the dACC registers cognitive conflict as an aversive signal, but no study directly tested this idea. In this pre-registered human fMRI study, we used multivariate pattern analyses to identify which regions respond similarly to conflict and aversive signals. The results show that, of all conflict- and value-related regions, only the dACC/pre-SMA showed shared representations, directly supporting recent dACC theories

    Dialkylcarbamoyl chloride (DACC)-coated dressings in the management and prevention of wound infection: A systematic review

    Get PDF
    Objective: Dialkylcarbomoyl chloride (DACC)-coated dressings (Leukomed Sorbact and Cutimed Sorbact) irreversibly bind bacteria at the wound surface that are then removed when the dressing is changed. They are a recent addition to the wound care professional's armamentarium and have been used in a variety of acute and chronic wounds. This systematic review aims to assess the evidence supporting the use of DACC-coated dressings in the clinical environment. Method: We included all reports of the clinical use of DACC-coated dressings in relation to wound infection. Medline, Embase, CENTRAL and CINAHL databases were searched to September 2016 for studies evaluating the role of DACC-coated dressings in preventing or managing wound infections. Results: We identified 17 studies with a total of 3408 patients which were included in this review. The DACC-coating was suggested to reduce postoperative surgical site infection rates and result in chronic wounds that subjectively looked cleaner and had less bacterial load on microbiological assessments. Conclusion: Existing evidence for DACC-coated dressings in managing chronic wounds or as a surgical site infection (SSI) prophylaxis is limited but encouraging with evidence in support of DACC-coated dressings preventing and treating infection without adverse effects

    Connectivity differences between Gulf War Illness (GWI) phenotypes during a test of attention

    Get PDF
    One quarter of veterans returning from the 1990–1991 Persian Gulf War have developed Gulf War Illness (GWI) with chronic pain, fatigue, cognitive and gastrointestinal dysfunction. Exertion leads to characteristic, delayed onset exacerbations that are not relieved by sleep. We have modeled exertional exhaustion by comparing magnetic resonance images from before and after submaximal exercise. One third of the 27 GWI participants had brain stem atrophy and developed postural tachycardia after exercise (START: Stress Test Activated Reversible Tachycardia). The remainder activated basal ganglia and anterior insulae during a cognitive task (STOPP: Stress Test Originated Phantom Perception). Here, the role of attention in cognitive dysfunction was assessed by seed region correlations during a simple 0-back stimulus matching task (“see a letter, push a button”) performed before exercise. Analysis was analogous to resting state, but different from psychophysiological interactions (PPI). The patterns of correlations between nodes in task and default networks were significantly different for START (n = 9), STOPP (n = 18) and control (n = 8) subjects. Edges shared by the 3 groups may represent co-activation caused by the 0-back task. Controls had a task network of right dorsolateral and left ventrolateral prefrontal cortex, dorsal anterior cingulate cortex, posterior insulae and frontal eye fields (dorsal attention network). START had a large task module centered on the dorsal anterior cingulate cortex with direct links to basal ganglia, anterior insulae, and right dorsolateral prefrontal cortex nodes, and through dorsal attention network (intraparietal sulci and frontal eye fields) nodes to a default module. STOPP had 2 task submodules of basal ganglia–anterior insulae, and dorsolateral prefrontal executive control regions. Dorsal attention and posterior insulae nodes were embedded in the default module and were distant from the task networks. These three unique connectivity patterns during an attention task support the concept of Gulf War Disease with recognizable, objective patterns of cognitive dysfunction

    A functional dissociation of conflict processing within anterior cingulate cortex

    Get PDF
    Goal-directed behavior requires cognitive control to regulate neural processing when conflict is encountered. The dorsal anterior cingulate cortex (dACC) has been associated with detecting response conflict during conflict tasks. However, recent findings have indicated not only that two distinct subregions of dACC are involved in conflict processing but also that the conflict occurs at both perceptual and response levels. We clarified a functional dissociation of the caudal dACC (cdACC) and the rostral dACC (rdACC) in responding to different sources of conflict. The cdACC was selectively engaged in perceptual conflict whereas the rdACC was more active in response conflict. Further, the dorsolateral prefrontal cortex (DLPFC) was coactivated not with cdACC but with rdACC. We suggest that cdACC plays an important role in regulative processing of perceptual conflict whereas rdACC is involved in detecting response conflict

    Development of a test bench for the electronics of ionizing radiationdetectors

    Get PDF
    In the present final degree project a low cost test bench is presented. A test bench is an envi-ronment used to verify the correctness of devices. In this case, the test bench is used to test preamplifiers and digitizers of the nuclear instrumentation laboratory. These instruments are used for ionizing particle detection. The initial problematic of the project was to investigate if it was possible to do a testing working bench with a cheap digital circuit as microcontrollers. After a study of the actual market, the Arduino Due was chosen. Arduino is an open-source electronics platform based on easy-to-use hardware and software. In the initial stage of the project, the attention was focused on the documentation about the Arduino boards. It was quickly observed that the sampling time delivered by the Aduino IDE was not acceptable for a nuclear test bech. When inquiring into the technical datasheet of the Atmel SAM3X microchip, used by the Arduino Due, it was achieved making signals with sampling time acceptable for nuclear instrumentation. Once discovered the potential of Arduino Due, a GUI was made to fully customize the shape of the pulses generated by the Arduino board. Therefore, the development of a cheap testing workbench was achieved

    Sleep-amount differentially affects fear-processing neural circuitry in pediatric anxiety: A preliminary fMRI investigation.

    Get PDF
    Insufficient sleep, as well as the incidence of anxiety disorders, both peak during adolescence. While both conditions present perturbations in fear-processing-related neurocircuitry, it is unknown whether these neurofunctional alterations directly link anxiety and compromised sleep in adolescents. Fourteen anxious adolescents (AAs) and 19 healthy adolescents (HAs) were compared on a measure of sleep amount and neural responses to negatively valenced faces during fMRI. Group differences in neural response to negative faces emerged in the dorsal anterior cingulate cortex (dACC) and the hippocampus. In both regions, correlation of sleep amount with BOLD activation was positive in AAs, but negative in HAs. Follow-up psychophysiological interaction (PPI) analyses indicated positive connectivity between dACC and dorsomedial prefrontal cortex, and between hippocampus and insula. This connectivity was correlated negatively with sleep amount in AAs, but positively in HAs. In conclusion, the presence of clinical anxiety modulated the effects of sleep-amount on neural reactivity to negative faces differently among this group of adolescents, which may contribute to different clinical significance and outcomes of sleep disturbances in healthy adolescents and patients with anxiety disorders

    Are You Being Rejected or Excluded? Insights from Neuroimaging Studies Using Different Rejection Paradigms

    Get PDF
    Rejection sensitivity is the heightened tendency to perceive or anxiously expect disengagement from others during social interaction. There has been a recent wave of neuroimaging studies of rejection. The aim of the current review was to determine key brain regions involved in social rejection by selectively reviewing neuroimaging studies that employed one of three paradigms of social rejection, namely social exclusion during a ball-tossing game, evaluating feedback about preference from peers and viewing scenes depicting rejection during social interaction. A cross the different paradigms of social rejection, there was concordance in regions for experiencing rejection, namely dorsal anterior cingulate cortex (ACC), subgenual ACC and ventral ACC. Functional dissociation between the regions for experiencing rejection and those for emotion regulation, namely medial prefrontal cortex, ventrolateral prefrontal cortex (VLPFC) and ventral striatum, was evident in the positive association between social distress and regions for experiencing rejection and the inverse association between social distress and the emotion regulation regions. The paradigms of social exclusion and scenes depicting rejection in social interaction were more adept at evoking rejection-specific neural responses. These responses were varyingly influenced by the amount of social distress during the task, social support received, self-esteem and social competence. Presenting rejection cues as scenes of people in social interaction showed high rejection sensitive or schizotypal individuals to under-activate the dorsal ACC and VLPFC, suggesting that such individuals who perceive rejection cues in others down-regulate their response to the perceived rejection by distancing themselves from the scene

    Similarities and differences of functional connectivity in drug-naĂŻve, first-episode adolescent and young adult with major depressive disorder and schizophrenia

    Get PDF
    Major depressive disorder (MDD) and schizophrenia (SZ) are considered two distinct psychiatric disorders. Yet, they have considerable overlap in symptomatology and clinical features, particularly in the initial phases of illness. The amygdala and prefrontal cortex (PFC) appear to have critical roles in these disorders; however, abnormalities appear to manifest differently. In our study forty-nine drug-naĂŻve, first-episode MDD, 45 drug-naĂŻve, first-episode SZ, and 50 healthy control (HC) participants from 13 to 30 years old underwent resting-state functional magnetic resonance imaging. Functional connectivity (FC) between the amygdala and PFC was compared among the three groups. Significant differences in FC were observed between the amygdala and ventral PFC (VPFC), dorsolateral PFC (DLPFC), and dorsal anterior cingulated cortex (dACC) among the three groups. Further analyses demonstrated that MDD showed decreased amygdala-VPFC FC and SZ had reductions in amygdala-dACC FC. Both the diagnostic groups had significantly decreased amygdala-DLPFC FC. These indicate abnormalities in amygdala-PFC FC and further support the importance of the interaction between the amygdala and PFC in adolescents and young adults with these disorders. Additionally, the alterations in amygdala-PFC FC may underlie the initial similarities observed between MDD and SZ and suggest potential markers of differentiation between the disorders at first onset
    • …
    corecore