18,086 research outputs found

    Modal strain energies in COSMIC NASTRAN

    Get PDF
    A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures

    Hartree-Fock-Bogoliubov Model and Simulation of Attractive and Repulsive Bose-Einstein Condensates

    Get PDF
    We describe a model of dynamic Bose-Einstein condensates near a Feshbach resonance that is computationally feasible under assumptions of spherical or cylindrical symmetry. Simulations in spherical symmetry approximate the experimentally measured time to collapse of an unstably attractive condensate only when the molecular binding energy in the model is correct, demonstrating that the quantum fluctuations and atom-molecule pairing included in the model are the dominant mechanisms during collapse. Simulations of condensates with repulsive interactions find some quantitative disagreement, suggesting that pairing and quantum fluctuations are not the only significant factors for condensate loss or burst formation. Inclusion of three-body recombination was found to be inconsequential in all of our simulations, though we do not consider recent experiments [1] conducted at higher densities

    Detection and Estimation Theory

    Get PDF
    Contains reports on two research projects.Joint Services Electronics Programs (U. S. Army, U. S. Navy, and U.S. Air Force)under Contract DA 28-043-AMC-02536(E

    Helical vs. fundamental solitons in optical fibers

    Full text link
    We consider solitons in a nonlinear optical fiber with a single polarization in a region of parameters where it carries exactly two distinct modes, the fundamental one and the first-order helical mode. From the viewpoint of applications to dense-WDM communication systems, this opens way to double the number of channels carried by the fiber. Aside from that, experimental observation of helical (spinning) solitons and collisions between them and with fundamental solitons are issues of fundamental interest. We introduce a system of coupled nonlinear Schroedinger equations for fundamental and helical modes, which have nonstandard values of the cross-phase-modulation coupling constants, and investigate, analytically and numerically, results of "complete" and "incomplete" collisions between solitons carried by the two modes. We conclude that the collision-induced crosstalk is partly attenuated in comparison with the usual WDM system, which sometimes may be crucially important, preventing merger of the colliding solitons into a breather. The interaction between the two modes is found to be additionally strongly suppressed in comparison with that in the WDM system in the case when a dispersion-shifted or dispersion-compensated fiber is used.Comment: a plain latex file with the text and two ps files with figures. Physica Scripta, in pres

    Interference of diffraction and transition radiation and its application as a beam divergence diagnostic

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1103/PhysRevSTAB.9.052802We have observed the interference of optical diffraction radiation (ODR) and optical transition radiation (OTR) produced by the interaction of a relativistic electron beam with a micromesh foil and a mirror. The production of forward directed ODR from electrons passing through the holes and wires of the mesh and their separate interactions with backward OTR from the mirror are analyzed with the help of a simulation code. By careful choice of the micromesh properties, mesh-mirror spacing, observation wavelength, and filter band pass, the interference of the ODR produced from the unperturbed electrons passing through the open spaces of the mesh and OTR from the mirror are observable above a broad incoherent background from interaction of the heavily scattered electrons passing through the mesh wires. These interferences (ODTRI) are sensitive to the beam divergence and can be used to directly diagnose this parameter. We compare experimental divergence values obtained using ODTRI, conventional OTRI, for the case when front foil scattering is negligible, and computed values obtained from transport code calculations and multiple screen beam size measurements. We obtain good agreement in all cases.This work is supported by the Office of Naval Research and the DOD Joint Technology Offic

    Statistical Communication Theory

    Get PDF
    Contains reports on six research projects.National Science Foundation (Grant GP-2495)National Institutes of Health (Grant MH-04737-04)National Aeronautics and Space Administration (Grant NsG-496

    Phonon density of states and heat capacity of La_(3−x)Te_4

    Get PDF
    The phonon density of states (DOS) of La_(3−x)Te_4 compounds (x=0.0,0.18,0.32) was measured at 300, 520, and 780 K, using inelastic neutron scattering. A significant stiffening of the phonon DOS and a large broadening of features were observed upon introduction of vacancies on La sites (increasing x). Heat-capacity measurements were performed at temperatures 1.85 ≤ T ≤ 1200 K and were analyzed to quantify the contributions of phonons and electrons. The Debye temperature and the electronic coefficient of heat capacity determined from these measurements are consistent with the neutron-scattering results, and with previously reported first-principles calculations. Our results indicate that La vacancies in La_(3−x)Te_4 strongly scatter phonons and this source of scattering appears to be independent of temperature. The stiffening of the phonon DOS induced by the introduction of vacancies is explained in terms of the electronic structure and the change in bonding character. The temperature dependence of the phonon DOS is captured satisfactorily by the quasiharmonic approximation

    Lorentz-covariant deformed algebra with minimal length

    Get PDF
    The DD-dimensional two-parameter deformed algebra with minimal length introduced by Kempf is generalized to a Lorentz-covariant algebra describing a (D+1D+1)-dimensional quantized space-time. For D=3, it includes Snyder algebra as a special case. The deformed Poincar\'e transformations leaving the algebra invariant are identified. Uncertainty relations are studied. In the case of D=1 and one nonvanishing parameter, the bound-state energy spectrum and wavefunctions of the Dirac oscillator are exactly obtained.Comment: 8 pages, no figure, presented at XV International Colloquium on Integrable Systems and Quantum Symmetries (ISQS-15), Prague, June 15-17, 200
    • …
    corecore