MODAL STRAIN ENERGIES IN COSMIC NASTRAN

B. D. Snyder and V. B. Venkayya
Flight Dynamics Laboratory
Wright Patterson AFB

SUMMARY

A computer program was developed to take a NASTRAN output file from a normal modes analysis and calculate the modal strain energies of selected elements. The FORTRAN program can determine the modal strain energies for CROD, CBAR, CELAS, CTRMEM, CQDMEM2, and CSHEAR elements. Modal strain energies are useful in estimating damping in structures.

INTRODUCTION

This work was initiated to predict damping in a large passively damped truss structure. The twelve meter truss structure is currently undergoing modal testing in preparation for controls experiments. An estimate of the total damping in the structure is needed for the controls experiments.

The starting point for the computer program was the ANALYZE program (ref. 1). First, the information needed for the strain energies was extracted from a NASTRAN output file (ref. 2). Element information is extracted from the echo of the bulk data and eigenvector information is extracted from the eigenvector tables for each mode. The element stiffness matrices are formed and then multiplied by the appropriate element eigenvector and its transpose and divided by two. The result is the element strain energies for a given mode. With this information, the modal strain energy method can be used to predict the damping in a viscoelastically damped structure. COSMIC NASTRAN can output element strain energies but only for static analyses. To predict the structural damping, the element modal strain energies for a normal modes analysis have to be found.

SYMBOLS

$w_{x}=x$ displacements in the plane of the plate in the local coordinate system
$w_{y}=y$ displacements in the plane of the plate in the local coordinate system
$a_{1}, b_{1}, c_{1}, a_{2}, b_{2}, c_{2}=$ six undetermined coefficients
$x_{1}, y_{1}, \ldots, x_{3}, y_{3}=$ coordinates of the 3 nodes of the triangle in the local coordinate system
$\underset{\sim}{\eta}=$ shape matrix
$\underset{\sim}{\sigma}=$ stress vector
$\underset{\sim}{\epsilon}=$ strain vector

```
\(G=\) shear modulus
    \(E=\) modulus of elasticity
    \(\underset{\sim}{k}=\) element stiffness matrix
    \(\phi^{r}=\) element eigenvector for the \(r\) th mode
```


ELEMENT FORMULATION

As mentioned previously, the formulation of the elements comes from the ANALYZE program. The element stiffness matrices are exactly the same as the COSMIC NASTRAN formulation for the CELAS, CBAR, and CROD elements. The formulation for the CTRMEM and CQDMEM2 elements is slightly different than COSMIC NASTRAN. The CSHEAR formulation is very different from the COSMIC NASTRAN formulation. The basis for the derivation of the shear panel is empirical but accurately constructed finite element models produce satisfactory results. The modal strain energy program will produce good results if the shear panel planform is as close to rectangular as possible. The less skewing of the element, the better the results will be.

The triangular membrane element used in this program is a constant strain plate element. The quadrilateral membrane and shear elements are constructed of four (nonoverlapping) of the constant strain triangular membrane elements mentioned above. The elements are assumed to be flat plates which means the warping in the elements is ignored. The elements have a fictitious interior node which is later removed by static condensation. Only shear energy is considered in the stiffness of the shear element where the quadrilateral membrane element considers all the energy in the element.

Since the triangular membrane element is the basis for all the other plate elements in this program, the derivation will be given along with how these triangle elements are used to formulate the quadrilateral and shear elements. The linear displacement field in the triangular element can be represented by

$$
\begin{equation*}
w_{x}=a_{1} x+b_{1} y+c_{1} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
w_{y}=a_{2} x+b_{2} y+c_{2} \tag{2}
\end{equation*}
$$

or in matrix form

$$
\underset{\sim}{w}=\left(\begin{array}{llllll}
x & y & 1 & 0 & 0 & 0 \tag{3}\\
0 & 0 & 0 & x & y & 1
\end{array}\right)\left(\begin{array}{c}
a_{1} \\
b_{1} \\
c_{1} \\
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right)
$$

The six unknown coefficients can be uniquely determined by the six boundary conditions
at the nodes.

$$
\left(\begin{array}{c}
v_{1} \tag{4}\\
v_{3} \\
v_{5} \\
\hline v_{2} \\
v_{4} \\
v_{6}
\end{array}\right)=\left(\begin{array}{lll|lll}
x_{1} & y_{1} & 1 & \mid & 0 & 0 \\
x_{2} & 0 \\
x_{2} & y_{2} & 1 & \mid & 0 & 0 \\
0 \\
x_{3} & y_{3} & 1 & \mid & 0 & 0 \\
0 \\
\hline 0 & 0 & 0 & \mid & x_{1} & y_{1}
\end{array} 1\right.
$$

The inversion of the partitioned diagonal matrix involves simply the inversion of the component matrix. The shape matrix $\underset{\sim}{\eta}$ is given by

$$
\begin{equation*}
\underset{\sim}{\eta}=\underset{\sim}{x}{\underset{\sim}{Z}}^{-1} \tag{5}
\end{equation*}
$$

where the matrix x is given by

$$
\underset{\sim}{x}=\left(\begin{array}{llllll}
x & y & 1 & 0 & 0 & 0 \tag{6}\\
0 & 0 & 0 & x & y & 1
\end{array}\right)
$$

and the $\underset{\sim}{Z}$ matrix is given by

$$
\underset{\sim}{Z}=\left(\begin{array}{cc}
\underset{\sim}{X} & 0 \tag{7}\\
\hline 0 & \underset{\sim}{X}
\end{array}\right)
$$

The coordinate matrix $\underset{\sim}{X}$ is given by

$$
\underset{\sim}{X}=\left(\begin{array}{lll}
x_{1} & y_{1} & 1 \tag{8}\\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right)
$$

From linear strain-displacement relations, the strains can be written as

$$
\begin{gather*}
\epsilon_{x}=\frac{\partial w_{x}}{\partial x}=a_{1} \tag{9}\\
\epsilon_{y}=\frac{\partial w_{y}}{\partial y}=b_{2} \tag{10}\\
\epsilon_{x y}=\frac{\partial w_{x}}{\partial y}+\frac{\partial w_{y}}{\partial x}=b_{1}+a_{2} \tag{11}
\end{gather*}
$$

From the principle of virtual work, the elements of the member stiffness matrix can be written as

$$
\begin{equation*}
k_{i j}=\int_{V}{\underset{\sim}{ }}^{(i)^{t}}{\underset{\epsilon}{(j)}}_{(j)} d V=\int_{V} \epsilon^{(i)^{t}} \underset{\sim}{E}{\underset{\epsilon}{(j)}}_{(j)} d V \tag{12}
\end{equation*}
$$

where ${\underset{\sim}{a}}^{(i)}$ and ${\underset{\sigma}{c}}^{(j)}$ are the stress and strain matrices corresponding to the unit displacement modes explained in equation 8 . Since the linear displacement relation implies constant strain, the integral in equation 12 can be replaced by the volume of the element:

$$
\begin{equation*}
k_{i j}=\frac{1}{2}|\underset{\sim}{X}| t{\underset{\sim}{e}}^{(i)^{t}} \underset{\sim}{E} \underbrace{(j)} \tag{13}
\end{equation*}
$$

where $|\underset{\sim}{X}|$ is the determinant of the nodal coordinate matrix which represents twice the area of the element and t is the thickness of the element. Finally, the stiffness matrix of the triangular membrane element is given by

Equation 14 gives the formulation for the stiffness matrix of the triangular membrane elements. What follows, is how four of these triangular elements are used to construct quadrilateral membrane and shear elements.

The stiffness matrix of the quadrilateral membrane element is determined by breaking it into four component triangles. The fictitious node in the quadrilateral is located by averaging the coordinates of the four nodes as follows

$$
\begin{align*}
& x_{5}=\frac{x_{1}+x_{2}+x_{3}+x_{4}}{4} \tag{15}\\
& y_{5}=\frac{y_{1}+y_{2}+y_{3}+y_{4}}{4} \tag{16}
\end{align*}
$$

The stiffness of the four triangles can then be computed by equation 14. Addition of the four stiffness matrices gives a 10×10 stiffness matrix with two degrees of freedom included for the fifth node. The force displacement relations of the five node quadrilateral are written as

$$
\begin{equation*}
{\underset{\sim}{\mathrm{Q}}}={\underset{\sim}{\mathrm{Q}}}{\underset{\sim}{\mathrm{Q}}}^{2} \tag{17}
\end{equation*}
$$

where the subscript refers to the quadrilateral element with five nodes. Equation 17, partitioned to isolate the degrees of freedom of the fifth node can be written as

Equation 18 can be written as two separate equations

$$
\begin{align*}
& {\underset{\sim}{\mathrm{R}}}_{\mathrm{I}}={\underset{\sim}{\mathrm{I}, \mathrm{I}}}^{\underset{\sim}{\mathrm{I}}}+{\underset{\sim}{\mathrm{k}, \mathrm{II}}}^{r_{\mathrm{II}}} \tag{19}\\
& {\underset{\sim}{\mathrm{RII}}}={\underset{\sim}{\mathrm{III}, \mathrm{I}}}^{r_{\mathrm{I}}}+{\underset{\sim}{\mathrm{II}, \mathrm{II}}}^{r_{\mathrm{II}}} \tag{20}
\end{align*}
$$

Since the fifth node doesn't actually exist in the original model, no external forces can be applied to this node. This condition gives

$$
\begin{equation*}
{\underset{\sim}{\mathrm{II}}}=-k_{\sim}^{\mathrm{II}, \mathrm{II}}-1{\underset{\sim}{\mathrm{HI}, \mathrm{I}}}^{\tau_{\mathrm{I}}} \tag{21}
\end{equation*}
$$

Substitution of equation 21 in equation 19 gives

$$
\begin{equation*}
{\underset{\sim}{\mathrm{I}}}=\left({\underset{\sim}{\mathrm{I}, \mathrm{I}}}-{\underset{\sim}{\mathrm{I}, \mathrm{II}}}^{k_{\sim}}-\underset{\sim}{-1} \underset{\mathrm{II}, \mathrm{I}}{k_{\mathrm{I}}}\right){\underset{\sim}{\mathrm{I}}} \tag{22}
\end{equation*}
$$

From equation 22 the stiffness matrix of the original quadrilateral membrane element can be written as

$$
\begin{equation*}
\underset{\sim}{k}=k_{\mathrm{II}}-{\underset{\sim}{I}, \mathrm{II}}_{k_{\mathrm{II}, \mathrm{II}}^{-1}}^{k_{\mathrm{II}, \mathrm{I}}} \tag{23}
\end{equation*}
$$

The shear element is also composed of four triangular elements however, the stiffness matrices of the component triangles are determined by considering only the shear strain energy (equation 13).

$$
\begin{equation*}
k_{i j}=\frac{1}{2}|\underset{\sim}{X}| t \epsilon_{x y}^{(i)} G \epsilon_{x y}^{(j)} \tag{24}
\end{equation*}
$$

MODAL STRAIN ENERGY PROGRAM

The program starts by reading in all the information it needs from a NASTRAN output file for a normal modes analysis. As the program is set up, it can handle 1,000 of any one type of element for a total of 6,000 elements. A total of 100 materials can be specified but only isotropic materials specified on MAT1 cards are currently accounted for. The model can have 100 properties for any one element type for a total of 600 property cards. These limits can easily be expanded by changing the dimensions of the arrays in the code. The CELAS elements (CELAS1 or CELAS2) must be grounded (fixed) at one end with the other end connected to the structure. There are two ways to do this, one is to leave the second grid point of the CELAS card and its component blank or the second way is to specify a second grid point and component and then fix the second grid point component with an SPC card.

The next step in determining the modal strain energies is to calculate the element stiffness matrices. Using the equations derived above and equations for the CELAS, CBAR, and CROD elements, the stiffness matrices are generated. After this the eigenvector for the current element is extracted from the eigenvector table for a given mode. Then the following equation is used to determine the element modal strain energies for the given mode

$$
\begin{equation*}
\text { Element Modal Strain Energy }=\frac{1}{2} \phi^{r^{t}} \underset{\sim}{k} \phi_{\sim}^{r} \tag{25}
\end{equation*}
$$

The equation is used for each element for every mode printed in the NASTRAN normal modes analysis.

After the element strain energies are calculated, they are printed in an easy to read format. The modal strain energy program prints out the following quantities for each mode: element ID number (EID), element type (CBAR, CELAS, CROD, CTRMEM, CSHEAR, or CQDMEM2), element strain energy (in consistent units), percent element strain energy of the entire structure, sum of the total element strain energy for each element type, and the total element strain energy for the entire structure. The program also prints onehalf the generalized stiffness from the NASTRAN output file as a check. One-half the generalized stiffness should equal the total strain energy for the entire structure.

APPLICATIONS

Viscoelastic materials are seeing widespread use to suppress vibrations in all types of
structures. The ability of viscoelastic materials to passively damp vibrations in lightweight structures is well documented. Modal strain energies are useful in estimating the damping in this type of structure. The approach used to predict the modal damping (loss) factors for each mode of the structure is called the modal strain energy method. It states that the ratio of structural loss factor to viscoelastic material loss factor for a given mode of vibration can be estimated as the ratio of elastic strain energy in the viscoelastic to total elastic strain energy in the entire structure when it deforms into the particular undamped mode shape (ref. 3). Mathematically this can be stated as

$$
\begin{equation*}
\frac{\eta_{s}^{(r)}}{\eta_{v}}=\frac{V_{v}^{(r)}}{V_{s}^{(r)}} \tag{26}
\end{equation*}
$$

where
$\eta_{s}^{r}=$ loss factor for the r 'th mode of the composite structure
$\eta_{v}=$ material loss factor for the viscoelastic material
$V_{v}^{r}=$ elastic strain energy stored in the viscoelastic material when the structure deforms in its r 'th undamped mode shape
$V_{s}^{r}=$ elastic strain energy of the entire composite structure in the r 'th mode shape
Computing the undamped mode shapes of the composite structure with the viscoelastic material treated as if it were purely elastic with a real stiffness modulus, the right hand side of equation 26 is calculated as

$$
\begin{equation*}
\frac{V_{v}^{r}}{V_{s}^{r}}=\frac{\sum_{\theta=1}^{n} \phi_{\theta}^{r^{t}}{\underset{\sim}{\theta}}_{\theta} \phi_{\theta}^{r}}{\dot{\phi}^{r} K_{r} \phi_{\sim}^{r}} \tag{27}
\end{equation*}
$$

where
$\phi^{r}=r$ 'th mode shape vector
${\underset{\sim}{\theta}}_{r}^{r}=$ subvector formed by deleting from $\underset{\sim}{\phi}$ all entries not corresponding to motion of nodes of the θ^{\prime} th viscoelastic element
${\underset{\sim}{k}}_{\theta}=$ element stiffness matrix of the θ 'th viscoelastic element
$\underset{\sim}{K}=$ stiffness matrix of the entire composite structure
$n=$ number of viscoelastic elements in the model
Combining equations 26 and 27 you get (ref. 4)

$$
\begin{equation*}
\eta_{s}^{r}=\frac{\sum_{\theta=1}^{n}{\underset{v}{v}}^{n}{\underset{\sim}{r}}_{r^{t}}^{k_{\theta}}{\underset{\sim}{\theta}}_{\theta}^{r}}{\phi_{\sim}^{r^{t}} \underset{\sim}{K}{\underset{\sim}{r}}^{r}} \tag{28}
\end{equation*}
$$

This equation states that if you create a NASTRAN model of the damped structure with all elements included except damper elements, and then run a normal modes analysis,
you have all the information needed to get the structural loss factor. After you make the NASTRAN run, you run the output through the element modal strain energy program which gives you the percentages of element strain energy to total strain energy for the entire structure. The percentages for the elements that actually possess viscoelastic damping are multiplied by that particular elements material loss factor. These quantities are then summed to give the loss factor for the entire structure.

EXAMPLE PROBLEMS

Three example problems were used to demonstrate the ability of the element strain energy program to accurately output the element modal strain energies. The first problem is a rectangular wing box and it is shown broken up into its numbered elements in figure 1. The rectangular wing box consists of quadrilateral membrane elements for the inboard top and bottom skins, triangular membrane elements for the outboard top and bottom skins, bar elements for the outboard posts, rod elements for all other posts, shear elements for all the ribs and spars, elastic elements provide the inboard top skin attachment points with the inboard bottom skin points rigidly fixed. The strain energy outputs for the second mode of this model are given in table I. This model contains all the element types the strain energy program is capable of handling. Comparing the total structural strain energy with the value for one-half the generalized stiffness shows that the two are in agreement.

The second example is known as the intermediate complexity wing and is just a simplified NASTRAN model of the load carrying portion of a wing. Shown in figure 2 broken into its component elements and their numbering scheme, is a depiction of the wing. The model consists of quadrilateral membrane elements for most of the top and bottom skins, two triangular membrane elements for the outboard corner elements on the top and bottom skins, rod elements for all the posts, and shear elements for all the ribs and spars. The inboard top and bottom skin points rigidly fixed. The strain energy program output for the first mode of the model is given in table II. As you can see, the program accurately produces zero strain energy in all the rod elements for the first bending mode of the wing. The difference in the values for the total structural strain energy and one-half the generalized stiffness can be attributed to the different formulations of the stiffness matrices of the plate membrane and shear elements.

The final example is a part of the Large Space Structures Technology Program at the Flight Dynamics Laboratory. A NASTRAN model of the twelve meter truss structure is shown in figure 3. The elements aren't numbered because of the large number of elements in the model. The model consists of bar elements for the horizontal and vertical elements and rod elements for all the diagonals. The diagonal members contain the viscoelastic dampers on the actual structure. The model is supported at the base with a series of elastic elements. The strain energy output for the second mode is given in table III. This is the first torsion mode of the truss, so most of the strain energy is in the diagonal members. This is verified by the modal strain energy program. The loss factor for the entire structure has been predicted and is awaiting test results for verification.

CONCLUDING REMARKS

A FORTRAN program that calculates element strain energies has been developed and

$$
c-5
$$

verified. This program gives COSMIC NASTRAN a capability that was only previously available for static analysis. Work is currently underway to develop DMAP instructions to calculate modal strain energies directly in NASTRAN. With the ever increasing trend toward lighter structures, damping materials will see increased use in all types of structures. A simple, accurate method, such as the modal strain energy method, to predict structural damping is essential.

REFERENCES

1. Venkayya, V.B. and Tischler, V.A., ""ANALYZE" - Analysis of Aerospace Structures with Membrane Elements", AFFDL-TR-78-170, Aug. 1978.
2. The NASTRAN User's Manual, Jun. 1985.
3. Johnson, C.D., Kienholz, D.A., and Rogers, L.C., "Finite Element Prediction of Damping in Beams with Constrained Viscoelastic Layers," Shock and Vibration Bulletin, No. 50, Part 1, May 1981, pp. 71-82.
4. Johnson, C.D. and Kienholz, D.A., "Design and Testing of a Sixty Foot Damped Generic Space Truss."

TABLE I - RECTANGULAR WING BOX STRAIN ENERGIES

MODE 2

Element ID	Element Type	Element Strain Energy	\% Strain Energy
50001	CBAR	$-0.4068 \mathrm{E}-06$	0.0000
50002	CBAR	6.446	0.2810
50003	CBAR	$-0.6010 \mathrm{E}-06$	0.0000
500	CELAS	0.2516	0.0110
502	CELAS	$0.2749 \mathrm{E}-01$	0.0012
503	CELAS	$0.2810 \mathrm{E}-01$	0.0012
504	CELAS	69.68	3.0378
505	CELAS	55.31	2.4114
506	CELAS	50.50	2.2015
507	CELAS	0.5442	0.0237
508	CELAS	$0.9635 \mathrm{E}-01$	0.0042
509	CELAS	0.1016	0.0044
50004	CROD	$0.0000 \mathrm{E}+00$	0.0000
50005	CROD	$0.0000 \mathrm{E}+00$	0.0000
50006	CROD	$0.0000 \mathrm{E}+00$	0.0000
50007	CROD	1.088	0.0475
50008	CROD	0.1927	0.0084
50009	CROD	0.2032	0.0089
10001	CTRMEM	117.4	5.1190
10002	CTRMEM	116.7	5.0897

10011	CTRMEM	137.4	5.9880
10012	CTRMEM	117.8	5.1372
20001	CTRMEM	115.1	5.0171
20002	CTRMEM	119.7	5.2185
20011	CTRMEM	13.1	5.7594
20012	CTRMEM	115.9	5.0520
10003	CQDMEM	218.9	9.5449
10004	CQDMEM	166.3	7.2488
20003	CQDMEM	200.6	8.7462
20004	CQDMEM	189.0	8.2413
30001	CSHEAR	29.60	1.2904
30002	CSHEAR	88.67	3.8657
30003	CSHEAR	34.38	1.4987
30004	CSHEAR	80.61	3.5140
30005	CSHEAR	72.90	3.1781
30006	CSHEAR	28.34	1.2355
40001	CSHEAR	18.29	0.5360
40002	CSHEAR	8.467	0.3691
40003	CSHEAR	$0.6263 E-02$	0.0003
40004	CSHEAR	3.315	0.1445
40005	CSHEAR	3.752	0.1636
40006		$0.9805 E-05$	0.0000

[^0]TABLE II - INTERMEDIATE COMPLEXITY WING STRAIN ENERGIES

MODE 1

Element ID	Element Type	Element Strain Energy	\% Strain Energy
120	CROD	$0.0000 \mathrm{E}+00$	0.0000
121	CROD	$0.0000 \mathrm{E}+00$	0.0000
122	CROD	$0.0000 \mathrm{E}+00$	0.0000
123	CROD	$0.0000 \mathrm{E}+00$	0.0000
124	CROD	$0.0000 \mathrm{E}+00$	0.0000
125	CROD	$0.0000 \mathrm{E}+00$	0.0000
126	CROD	$0.0000 \mathrm{E}+00$	0.0000
127	CROD	$0.0000 \mathrm{E}+00$	0.0000
128	CROD	$0.0000 \mathrm{E}+00$	0.0000

CROD		
CROD	$0.0000 \mathrm{E}+00$	0.0000
CTRMEM	$0.0000 \mathrm{E}+00$	0.0000
CTRMEM	$0.2817 \mathrm{E}-01$	0.0046
CQDMEM	$0.2817 \mathrm{E}-01$	0.0046
CQDMEM	$0.8132 \mathrm{E}-01$	0.0131
CQDMEM	$0.8132 \mathrm{E}-01$	0.0131
CQDMEM	$0.6809 \mathrm{E}-01$	0.0110
CQDMEM	$0.6809 \mathrm{E}-01$	0.0110
CQDMEM	0.1561	0.0252
CQDMEM	0.1561	0.0252
CQDMEM	0.6461	0.1045
CQDMEM	0.6461	0.1045
CQDMEM	0.7805	0.1262
CQDMEM	0.7805	0.1262
CQDMEM	0.7629	0.1234
CQDMEM	0.7629	0.1234
CQDMEM	0.9026	0.1459
CQDMEM	0.9026	0.1459
CQDMEM	2.573	0.4161
CQDMDMMEM	2.573	0.4161
CQDMEM	3.169	0.5124
CQDMEM	3.169	0.5124
	3.299	0.5335
CQD	3.306	0.5345
CRM		

CQDMEM	3.306	0.5345
CQDMEM	5.762	0.9316
CQDMEM	5.762	0.9316
CQDMEM	7.520	1.2159
CQDMEM	7.520	1.2159
CQDMEM	7.967	1.2882
CQDMEM	7.967	1.2882
CQDMEM	7.312	1.1824
CQDMEM	7.312	1.1824
CQDMEM	9.504	1.5367
CQDMEM	9.504	1.5367
CQDMEM	12.89	2.0840
CQDMEM	12.89	2.0840
CQDMEM	14.20	2.2956
CQDMEM	14.20	2.2956
CQDMEM	12.59	2.0364
CQDMEM	12.59	2.0364
CQDMEM	12.67	2.0479
CQDMEM	12.67	2.0479
CQDMEM	17.60	2.8462
CQDMEM	17.60	2.8462
CQDMEM	21.24	3.4346
CQDMEM	21.24	3.4346
CQDMEM	19.38	3.1329
CQDMEM	19.38	3.1329
CQDMEM	13.58	2.1953
CQDMEM	13.58	2.1953
CQDMEM	17.25	2.7891
CQDMEM	17.25	2.7891
CQDMEM	20.66	3.3399
CQDMEM	20.66	3.3399
CQDMEM	16.06	2.5971
CQDMEM	16.06	2.5971
CQDMEM	6.645	1.0744
CQDMEM	6.645	1.0744
CQDMEM	17.18	2.7780
CQDMEM	17.18	2.7780
CQDMEM	21.31	3.4457
CQDMEM	21.31	3.4457
CQDMEM	23.16	3.7449
CQDMEM	23.16	3.7449
CSHEAR	$0.4318 \mathrm{E}-01$	0.0070
CSHEAR	$0.5833 \mathrm{E}-04$	0.0000
CSHEAR	0.4419E-01	0.0071
CSHEAR	$0.6681 \mathrm{E}-03$	0.0001
CSHEAR	0.1559E-02	0.0003
CSHEAR	$0.3317 \mathrm{E}-01$	0.0054
CSHEAR	$0.3689 \mathrm{E}-02$	0.0006
CSHEAR	$0.1579 \mathrm{E}-01$	0.0026
CSHEAR	$0.3236 \mathrm{E}-02$	0.0005
CSHEAR	$0.6835 \mathrm{E}-02$	0.0011
CSHEAR	$0.3295 \mathrm{E}-02$	0.0005
CSHEAR	$0.7111 \mathrm{E}-02$	0.0011

CSHEAR CSHEAR CSHEAR CSHEAR CSHEAR CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR
CSHEAR

$0.3093 \mathrm{E}-02$	0.0005
$0.4573 \mathrm{E}-02$	0.0007
$0.2292 \mathrm{E}-02$	0.0004
$0.4423 \mathrm{E}-02$	0.0007
$0.3590 \mathrm{E}-02$	0.0006
$0.4746 \mathrm{E}-02$	0.0008
$0.1902 \mathrm{E}-02$	0.0003
$0.4688 \mathrm{E}-02$	0.0008
$0.7538 \mathrm{E}-02$	0.0012
$0.8932 \mathrm{E}-02$	0.0014
$0.3638 \mathrm{E}-02$	0.0006
$0.9771 \mathrm{E}-02$	0.0016
$0.9090 \mathrm{E}-01$	0.0147
$0.6178 \mathrm{E}-01$	0.0100
$0.4218 \mathrm{E}-01$	0.0068
$0.6935 \mathrm{E}-01$	0.0112
0.5735	0.0927
0.3672	0.0594
0.1479	0.0239
0.2381	0.0385
0.2449	0.0396
0.4526	0.0732
0.5576	0.0902
0.5448	0.0881
0.3861	0.0624
$0.8999 \mathrm{E}-01$	0.0146
0.7155	0.1157
0.1065	0.0172
0.8149	0.1318
1.047	0.1692
1.125	0.1819
1.076	0.1740
1.026	0.1659
0.9453	0.1528
1.735	0.2805
$0.5387 \mathrm{E}-01$	0.0087
0.3877	0.0627
0.6420	0.1038
0.7546	0.1220
0.7662	0.1239
0.7926	0.1281
0.5955	0.0963
1.297	0.2097

STRAIN ENERGY IN CROD ELEMENTS $=0.0000 \mathrm{E}+00$
STRAIN ENERGY IN CTRMEM ELEMENTS $=0.5633 \mathrm{E}-01$
STRAIN ENERGY IN CQDMEM ELEMENTS $=600.4$
STRAIN ENERGY IN CSHEAR ELEMENTS $=17.97$
TOTAL STRAIN ENERGY $=618.5$
GENERALIZED STIFFNESS $/ 2=619.0$

TABLE III - TWELVE METER TRUSS STRAIN ENERGIES

MODE 2
Element ID Element Type Element Strain \% Strain Energy

101
102
103
104
106
107
108
109
111
112
113
114
116
117
118
119
120
121
122
123
125
126 127 128 130 131 132 133
135
136
137
138
139
140
141 142 144 145 146 147 149 150 151 152 154

CBAR

Energy

1.740	6.0085
1.724	5.9537
1.127	3.8917

$1.127 \quad 3.8917$
1.155 3.9862
$0.6792 \quad 2.3449$
$0.6611 \quad 2.2827$
$0.3441 \quad 1.1880$
$0.3522 \quad 1.2160$
$0.1476 \quad 0.5098$
$0.1436 \quad 0.4956$
$0.4434 \mathrm{E}-01 \quad 0.1531$
$0.4531 \mathrm{E}-01 \quad 0.1564$
$0.7187 \mathrm{E}-02 \quad 0.0248$
$0.6948 \mathrm{E}-02 \quad 0.0240$
$0.2278 \mathrm{E}-03 \quad 0.0008$
$0.2049 \mathrm{E}-03 \quad 0.0007$
$0.1767 \mathrm{E}-01 \quad 0.0610$
$0.4326 \mathrm{E}-02 \quad 0.0149$
$0.5652 \mathrm{E}-02 \quad 0.0195$
$0.2255 \mathrm{E}-020.0078$
$0.3096 \mathrm{E}-02 \quad 0.0107$
$0.1182 \mathrm{E}-02 \quad 0.0041$
$0.1833 \mathrm{E}-02 \quad 0.0063$
$0.3633 \mathrm{E}-03 \quad 0.0013$
$0.6576 \mathrm{E}-03 \quad 0.0023$
$0.1058 \mathrm{E}-03 \quad 0.0004$
$0.2597 \mathrm{E}-03 \quad 0.0009$
$0.2277 \mathrm{E}-04 \quad 0.0001$
$\begin{array}{ll}0.3004 \mathrm{E}-04 & 0.0001 \\ 0.4012 \mathrm{E}-04 & 0.0001\end{array}$
$0.1046 \mathrm{E}-04 \quad 0.0000$
$1.740 \quad 6.0085$
$1.724 \quad 5.9537$
$1.127 \quad 3.8917$
$1.155 \quad 3.9862$
$0.6792 \quad 2.3449$
$0.6611 \quad 2.2827$
$0.3441 \quad 1.1880$
$0.3522 \quad 1.2160$
$0.1476 \quad 0.5098$
$0.1436 \quad 0.4956$
$0.4434 \mathrm{E}-01 \quad 0.1531$
$0.4531 \mathrm{E}-01 \quad 0.1564$
$0.7187 \mathrm{E}-02 \quad 0.0248$

CBAR	$0.6948 \mathrm{E}-02$	0.0240
CBAR	$0.2278 \mathrm{E}-03$	0.0008
CBAR	$0.2049 \mathrm{E}-03$	0.0007
CBAR	$0.1767 \mathrm{E}-01$	0.0610
CBAR	$0.5047 \mathrm{E}-02$	0.0174
CBAR	$0.4326 \mathrm{E}-02$	0.0149
CBAR	$0.5652 \mathrm{E}-02$	0.0195
CBAR	$0.2255 \mathrm{E}-02$	0.0078
CBAR	$0.3096 \mathrm{E}-02$	0.0107
CBAR	$0.1182 \mathrm{E}-02$	0.0041
CBAR	$0.1833 \mathrm{E}-02$	0.0063
CBAR	$0.3633 \mathrm{E}-03$	0.0013
CBAR	$0.6576 \mathrm{E}-03$	0.0023
CBAR	$0.1058 \mathrm{E}-03$	0.0004
CBAR	$0.2597 \mathrm{E}-03$	0.0009
CBAR	$0.2277 \mathrm{E}-04$	0.0001
CBAR	$0.3004 \mathrm{E}-04$	0.0001
CBAR	$0.4012 \mathrm{E}-04$	0.0001
CBAR	$0.1046 \mathrm{E}-04$	0.0000
CBAR	$0.1054 \mathrm{E}-03$	0.0004
CBAR	$0.9258 \mathrm{E}-03$	0.0032
CBAR	$0.6164 \mathrm{E}-03$	0.0021
CBAR	$0.6752 \mathrm{E}-03$	0.0023
CBAR	$0.5726 \mathrm{E}-03$	0.0020
CBAR	$0.5726 \mathrm{E}-03$	0.0020
CBAR	$0.5583 \mathrm{E}-03$	0.0019
CBAR	$0.5189 \mathrm{E}-03$	0.0018
CBAR	$0.4704 \mathrm{E}-03$	0.0016
CBAR	$0.3950 \mathrm{E}-03$	0.0014
CBAR	$0.3950 \mathrm{E}-03$	0.0014
CBAR	$0.3261 \mathrm{E}-03$	0.0011
CBAR	$0.2753 \mathrm{E}-03$	0.0010
CBAR	$0.2157 \mathrm{E}-03$	0.0007
CBAR	$0.1482 \mathrm{E}-03$	0.0005
CBAR	$0.1482 \mathrm{E}-03$	0.0005
CBAR	$0.8562 \mathrm{E}-04$	0.0003
CBAR	$0.4871 \mathrm{E}-04$	0.0002
CBAR	$0.1600 \mathrm{E}-04$	0.0001
CBAR	$0.8716 \mathrm{E}-05$	0.0000
CBAR	$0.1055 \mathrm{E}-03$	0.0004
CBAR	$0.9257 \mathrm{E}-03$	0.0032
CBAR	$0.6163 \mathrm{E}-03$	0.0021
CBAR	$0.6755 \mathrm{E}-03$	0.0023
CBAR	$0.5725 \mathrm{E}-03$	0.0020
CBAR	$0.5725 \mathrm{E}-03$	0.0020
CBAR	$0.5583 \mathrm{E}-03$	0.0019
CBAR	$0.5191 \mathrm{E}-03$	0.0018
CBAR	$0.4706 \mathrm{E}-03$	0.0016
CBAR	$0.3950 \mathrm{E}-03$	0.0014
CBAR	$0.3950 \mathrm{E}-03$	0.0014
CBAR	0.00311	
CBAR	0.0007	

235	CBAR	0.1482E-03	0.0005
236	CBAR	$0.1482 \mathrm{E}-03$	0.0005
237	CBAR	$0.8558 \mathrm{E}-04$	0.0003
238	CBAR	$0.4871 \mathrm{E}-04$	0.0002
239	CBAR	$0.1596 \mathrm{E}-04$	0.0001
240	CBAR	$0.8653 \mathrm{E}-05$	0.0000
241	CBAR	$0.1054 \mathrm{E}-03$	0.0004
242	CBAR	$0.9258 \mathrm{E}-03$	0.0032
243	CBAR	$0.6164 \mathrm{E}-03$	0.0021
244	CBAR	$0.6752 \mathrm{E}-03$	0.0023
245	CBAR	$0.5726 \mathrm{E}-03$	0.0020
246	CBAR	$0.5726 \mathrm{E}-03$	0.0020
247	CBAR	$0.5583 \mathrm{E}-03$	0.0019
248	CBAR	$0.5189 \mathrm{E}-03$	0.0018
249	CBAR	$0.4704 \mathrm{E}-03$	0.0016
250	CBAR	$0.3950 \mathrm{E}-03$	0.0014
251	CBAR	$0.3950 \mathrm{E}-03$	0.0014
252	CBAR	0.3261 E-03	0.0011
253	CBAR	$0.2753 \mathrm{E}-03$	0.0010
254	CBAR	$0.2157 \mathrm{E}-03$	0.0007
255	CBAR	$0.1482 \mathrm{E}-03$	0.0005
256	CBAR	$0.1482 \mathrm{E}-03$	0.0005
257	CBAR	$0.8562 \mathrm{E}-04$	0.0003
258	CBAR	$0.4871 \mathrm{E}-04$	0.0002
259	CBAR	$0.1600 \mathrm{E}-04$	0.0001
260	CBAR	$0.8716 \mathrm{E}-05$	0.0000
261	CBAR	$0.1055 \mathrm{E}-03$	0.0004
262	CBAR	$0.9257 \mathrm{E}-03$	0.0032
263	CBAR	$0.6163 \mathrm{E}-03$	0.0021
264	CBAR	$0.6755 \mathrm{E}-03$	0.0023
265	CBAR	$0.5725 \mathrm{E}-03$	0.0020
266	CBAR	$0.5725 \mathrm{E}-03$	0.0020
267	CBAR	$0.5583 \mathrm{E}-03$	0.0019
268	CBAR	$0.5191 \mathrm{E}-03$	0.0018
269	CBAR	$0.4706 \mathrm{E}-03$	0.0016
270	CBAR	$0.3950 \mathrm{E}-03$	0.0014
271	CBAR	$0.3950 \mathrm{E}-03$	0.0014
272	CBAR	$0.3260 \mathrm{E}-03$	0.0011
273	CBAR	$0.2754 \mathrm{E}-03$	0.0010
274	CBAR	0.2158E-03	0.0007
275	CBAR	$0.1482 \mathrm{E}-03$	0.0005
276	CBAR	$0.1482 \mathrm{E}-03$	0.0005
277	CBAR	$0.8558 \mathrm{E}-04$	0.0003
278	CBAR	0.4871E-04	0.0002
279	CBAR	0.1596E-04	0.0001
280	CBAR	0.8652E-05	0.0000
301	CBAR	$0.7572 \mathrm{E}-01$	0.2614
302	CBAR	$0.5778 \mathrm{E}-01$	0.1995
303	CBAR	$0.9422 \mathrm{E}-01$	0.3253
304	CBAR	$0.5765 \mathrm{E}-01$	0.1990
305	CBAR	0.8604E-01	0.2971
306	CBAR	$0.5167 \mathrm{E}-01$	0.1784
307	CBAR	0.6932E-01	0.2393

308	CBAR	0.4699E-01	0.1622
309	CBAR	$0.5217 \mathrm{E}-01$	0.1801
310	CBAR	$0.3316 \mathrm{E}-01$	0.1145
311	CBAR	$0.3317 \mathrm{E}-01$	0.1145
312	CBAR	$0.2202 \mathrm{E}-01$	0.0760
313	CBAR	$0.1538 \mathrm{E}-01$	0.0531
314	CBAR	$0.7785 \mathrm{E}-02$	0.0269
315	CBAR	$0.3781 \mathrm{E}-02$	0.0131
316	CBAR	$0.8850 \mathrm{E}-03$	0.0031
317	CBAR	$0.7571 \mathrm{E}-01$	0.2614
318	CBAR	$0.5777 \mathrm{E}-01$	0.1995
319	CBAR	$0.9421 \mathrm{E}-01$	0.3253
320	CBAR	$0.5764 \mathrm{E}-01$	0.1990
321	CBAR	$0.8604 \mathrm{E}-01$	0.2971
322	CBAR	$0.5167 \mathrm{E}-01$	0.1784
323	CBAR	$0.6931 \mathrm{E}-01$	0.2393
324	CBAR	$0.4699 \mathrm{E}-01$	0.1622
325	CBAR	$0.5218 \mathrm{E}-01$	0.1801
326	CBAR	$0.3316 \mathrm{E}-01$	0.1145
327	CBAR	$0.3318 \mathrm{E}-01$	0.1145
328	CBAR	$0.2202 \mathrm{E}-01$	0.0760
329	CBAR	0.1539E-01	0.0531
330	CBAR	$0.7787 \mathrm{E}-02$	0.0269
331	CBAR	$0.3783 \mathrm{E}-02$	0.0131
332	CBAR	$0.8851 \mathrm{E}-03$	0.0031
333	CBAR	$0.7572 \mathrm{E}-01$	0.2614
334	CBAR	$0.5778 \mathrm{E}-01$	0.1995
335	CBAR	$0.9422 \mathrm{E}-01$	0.3253
336	CBAR	$0.5765 \mathrm{E}-01$	0.1990
337	CBAR	$0.8604 \mathrm{E}-01$	0.2971
338	CBAR	$0.5167 \mathrm{E}-01$	0.1784
339	CBAR	0.6932E-01	0.2393
340	CBAR	$0.4699 \mathrm{E}-01$	0.1622
341	CBAR	$0.5217 \mathrm{E}-01$	0.1801
342	CBAR	$0.3316 \mathrm{E}-01$	0.1145
343	CBAR	$0.3317 \mathrm{E}-01$	0.1145
344	CBAR	0.2202E-01	0.0760
345	CBAR	$0.1538 \mathrm{E}-01$	0.0531
346	CBAR	$0.7786 \mathrm{E}-02$	0.0269
347	CBAR	$0.3781 \mathrm{E}-02$	0.0131
348	CBAR	$0.8850 \mathrm{E}-03$	0.0031
349	CBAR	$0.7571 \mathrm{E}-01$	0.2614
350	CBAR	$0.5777 \mathrm{E}-01$	0.1995
351	CBAR	$0.9421 \mathrm{E}-01$	0.3253
352	CBAR	$0.5764 \mathrm{E}-01$	0.1990
353	CBAR	$0.8604 \mathrm{E}-01$	0.2971
354	CBAR	$0.5167 \mathrm{E}-01$	0.1784
355	CBAR	$0.6931 \mathrm{E}-01$	0.2393
356	CBAR	$0.4699 \mathrm{E}-01$	0.1622
357	CBAR	$0.5218 \mathrm{E}-01$	0.1801
358	CBAR	$0.3316 \mathrm{E}-01$	0.1145
359	CBAR	$0.3318 \mathrm{E}-01$	0.1145
360	CBAR	$0.2203 \mathrm{E}-01$	0.0760

CBAR
CBAR
CBAR
CBAR
CELAS
CELAS CELAS CELAS CELAS

$0.1539 \mathrm{E}-01$	0.0531
$0.7787 \mathrm{E}-02$	0.0269
$0.3783 \mathrm{E}-02$	0.0131
$0.8852 \mathrm{E}-03$	0.0031
$0.3367 \mathrm{E}-03$	0.0012
$0.2813 \mathrm{E}-05$	0.0000
$0.3367 \mathrm{E}-03$	0.0012
$0.2813 \mathrm{E}-05$	0.0000
$0.3367 \mathrm{E}-03$	0.0012
$0.2812 \mathrm{E}-05$	0.0000
$0.3367 \mathrm{E}-03$	0.0012
$0.2812 \mathrm{E}-05$	0.0000
$0.1465 \mathrm{E}-16$	0.0000
$0.4949 \mathrm{E}-10$	0.0000
$0.1465 \mathrm{E}-16$	0.0000
$0.4949 \mathrm{E}-10$	0.0000
4.794	16.5529
$0.7808 \mathrm{E}-10$	0.0000
4.794	16.5529
$0.7808 \mathrm{E}-10$	0.0000
$0.9110 \mathrm{E}-02$	0.0315
$0.8964 \mathrm{E}-02$	0.0309
$0.9110 \mathrm{E}-02$	0.0315
$0.8964 \mathrm{E}-02$	0.0309
$0.9111 \mathrm{E}-02$	0.0315
$0.8964 \mathrm{E}-02$	0.0310
$0.9111 \mathrm{E}-02$	0.0315
$0.8964 \mathrm{E}-02$	0.0310

STRAIN ENERGY IN CELAS ELEMENTS $=9.662$
STRAIN ENERGY IN CBAR ELEMENTS $=19.30$
TOTAL STRAIN ENERGY $=28.96$
GENERALIZED STIFFNESS $/ 2=28.96$

Figure 1 - Rectangular Wing Box Elements

Figure 2 - Intermediate Complexity Wing Elements

Figure 3 - Twelve Meter Truss Model

[^0]: STRAIN ENERGY IN CELAS ELEMENTS $=176.5$
 STRAIN ENERGY IN CBAR ELEMENTS $=6.446$
 STRAIN ENERGY IN CROD ELEMENTS $=1.484$
 STRAIN ENERGY IN CTRMEM ELEMENTS $=972.1$
 STRAIN ENERGY IN CQDMEM ELEMENTS $=774.9$
 STRAIN ENERGY IN CSHEAR ELEMENTS $=362.3$
 TOTAL STRAIN ENERGY $=2294$.
 GENERALIZED STIFFNESS $/ 2=2294$.

