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A. DETECTION OF SIGNALS TRANSMITTED OVER DOUBLY

SPREAD CHANNELS

State-variable techniques have provided solutions to several problems in communi-

cation theory.1-3 In particular, the optimum receiver for the detection of Gaussian sig-

nals in Gaussian noise can be realized and its performance conveniently analyzed when

the signal is modeled as the output of a finite-state system driven by white Gaussian

noise. 2 When a known waveform is transmitted over the Gaussian dispersive channel

that is commonly classified as delay-spread, Doppler-spread, or doubly spread, a

lumped-parameter state-variable model can be specified for the Doppler-spread case.

The concept of time and frequency duality relates the performance of the delay-spread

and the Doppler-spread models.2 For the doubly spread channel an exact finite-state

representation is not possible.

This report considers the detection problem when a distributed parameter state-

variable model is used for the doubly spread channel. First, we shall present the

model and specialize it to the wide-sense stationary uncorrelated scatter (WSSUS) chan-

nel case. Second, we shall review the detection problem and obtain a realizable esti-

mator for the distributed-parameter state variables. Third, we shall outline the

derivation of a differential equation for the covariance of the estimation error. Finally,

we shall compare the distributed-parameter model with a tapped delay line model of the

doubly spread channel. Complex distributed-parameter state variables are used through-

out.

1. Distributed-Parameter State-Variable Model for the

Doubly Spread Channel

For the detection problem considered in this report the narrow-band transmitted

signal can be expressed as1

1 This work was supported in part by the Joint Services Electronics Programs
(U. S. Army, U. S. Navy, and U.S. Air Force)under Contract DA 28-043-AMC-02536(E).
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Re f(t) e 0 < t < T
f(t) = (1)

0 elsewhere

The complex envelope of the received signal is

r(t) = s(t)+ w(t) T t < Tf, (2)

where w(t) is bandpass white noise with

E[ w(t)w (u)] = No6(t-u). (3)

(The star denotes conjugation.) For the doubly spread channel the signal component in (2)

is given by

s(t) = f(t-x) Y(x,t) dx. (4)
-- oo

The complex distributed parameter Gaussian process Y(x, t) represents the effect of the

doubly spread channel on the transmitted signal.

The distributed parameter state-variable model for Y(x,t) presented here is a spe-

cial case of the model given by Tzafestas and Nightingale,4 with the complex formulation

added according to Van Trees and co-workers.1 It is

aX(x, t)
at =F(x, t) X(x, t) + G(x, t) U(x, t)

(5)

Y(x,t) = C(x,t) X(x, t),

where X(x, t) is the n-dimensional distributed state vector, F(x, t), G(x, t) and C(x, t)

are known gain matrices, and U(x,t) is the p-dimensional, temporally white, Gaussian

noise input

E[ (x, t) Ut(y, T)] = Q(x, y, t) 6(t-r)

-T (6)E[U(x, t) U (y, )] = 0

E[ U(x, t)] = 0,

where superscript T denotes transpose, and superscript dagger denotes conjugate

transpose. The state at time t can be written

X(x, t) = (x, t t ) X(, t ) + , t, T) G(x, T) U(x, T) dT, t > t o (7)
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where (x, t, T) is the solution to

a N(x,t,T)

= F(x,t) P(x, t, )at

'(x, t, t) = I

The covariance matrix of the state vector is

E[X(x,t)Xt'(y,r)] = K (x,t; y, ).

From (7), it can be written

'I(x, t, T)K x(x,r; y, T)--X

% (y, T, t)

Note that

K (x,t;y, T)= K (y,7;x,t).-x -x

aK (x,t;y,t)
-x

at

a X '(y, t)

at+E E(x, t)

and, from (7),

E[ X(x, t) Uy, t)] G(x,t) Q(x, y, t).

Substitution of (5) in (12) plus the relation (13) gives the differential equation

aK (x,t; y, t)at = Fx, t-x) K(X, t; , t) +
at = F(x, t)K (x, t; y, t)+at -x (x, t; y, t) F (y,t) + G(x, t) Q(x,y, t) G (y,t)

(14)
(14)

with

K (x, Ti;y, T) = Pi(x,y).

From the assumption that

E X(x, T.)XT

L- 1-
(y, Ti) = 0
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(8)

t>T

t <17.

(9)

(10)

Now

(11)

(12)

(13)

(15)

(16)

K x(X, t; y,7) =-x

a-X(x, t) }E t -- _ (y, t)
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it follows by an argument similar to that of Van Trees et al.1 that

~ T
E[_X(x,t)X (y, 7)] = 0 (17)

for all x,y,t, and T. From (5),

Ky(x, t; y, T) = E[ Y(x, t)Y (y, )

= C(x,t) Kx(X,t; y, ) C (y, T) (18)

E [ Y(x, t)Y(y, 7)] = 0.

The distributed-parameter state-variable model for the doubly spread channel is

specified by (5) and (6), and the covariance matrix relationships are given by (9), (10),
4 5

and (14-18). The special case of a WSSUS channel 5 occurs when Ky(x, t; y,7) can be

written

Ky(x,t; y, 7) = KD(x, t-T) 6(x-y). (19)

That is, Y(x,t) is spatially white and temporally stationary. From (18), this condition

is satisfied if C(x,t) is only a function of x and if

K x(x,t; y,7r) = K(x, t-) 6(x-y). (20)

For (20) to hold, inspection of (14) indicates that F(x,t), G(x,t), and Q(x, y, t) are con-

stant with respect to t, and furthermore

Q(x,y,t) = Q(x) 6(x-y). (21)

Thus the WSSUS state-variable model is

a X(x, t)
at = F(x) X(x, t) + G(x) U(x, t)

at - (22)

Y(x,t) = C(x) X(x,t)

E[ U(x, t) U (y, 7)] = Q(x) 6(x-y) 6(t-T)
(23)

E -(x, t) UT

E[U(x,t)U (y,T)] = 0.

The covariance matrices for the WSSUS model follow directly from the more gen-

eral case above. From (19), (20), and (22),

KD(X, T)= C(x) K(x, ) C '(x). (24)
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From (8) and (10),

S(x, 7) K (x)
-0

K(x, 7) =

K(x) (x, -7)

where O(x, T) is the solution to

a (x,t)

at = _F(x) 0(x, t)

T><0(25)

-< 0 (25)

(26)

O(x, 0) =

The matrix K (x) is the steady-state solution of (14)
-o

S= F(x) Ko(x) + ICo(x) F G(x) F(x) (x).

The scattering function for the WSSUS channel is defined as

~ 0 K -j2TfT
S(x, f) = a KD(x, T)e dT,

-o

where the constant a normalizes S(x, f) to unit volume. S(x, f) is positive and real for

all x and f, since Q(x) is Hermitian with a non-negative definite real part.

Example: Consider a first-order WSSUS model.

Then

F(x) = -k(x) = -kr(x) - jki(x)

G(x) = C(x) = 1

Q(x) = Q(x)

with

Q(x) > 0

kr(x) > 0

From (26) and (27)

(x, T) = exp[-kr(x)IT I-jk (x)T]

Q(x)
K (x) = x0 2kr(x)

r
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(28)

(29)

(30)

(31)

(32)
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(a)1 - cos 2x

01 TX

k(x) = k(1 - sin )

2nx < <
-4

D
x<D

(b) ?(x) =4-

x2 + cos 
-  

D 3D
+cos - < x < -

D 4 - 4

0 elsewhere

k(x) 
= 

k(l - TD 
) 

- kx- j 15,

Fig. IX-1. Examples of scattering functions associated with
a first-order model.
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0< x< D

elsewhere
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Thus

Q(x)
KD(x, T) = exp[-kr(x) ITI -jki(x)T] (33)

2k r(x)

aQ(x)
S(x,f) = (34)

(2nf+ki(x)) 2 + k2(x)

where

- 00 Q(x)a-1 = dx (35)
-oo 2kr(x)

The scattering function in (34), considered as a function of frequency at any value

of x, is a one-pole spectrum centered at f = -ki(x)/2T with a peak value aQ(x)/k2(x) and

3 dB points ±k (x)/2Tr about the center frequency. Except for the constraints of (30),
r

Q(x) and K(x) are arbitrary. This permits considerable flexibility in the choice of

S(x, f), even for this first order model. For instance, if k.(x) is proportional to x,

then S(x, f) is sheared in the x-f plane. Also, Q(x) can be chosen so that S(x, f) is

multimodal in the x direction. Figure IX-1 shows several plots of possible S(x, f).

The example above indicates that the class of scattering functions which can be

described by the model of (22) are those for which S(x, f) is a rational function in f.

The poles and zeros of this particular function may depend on x in an arbitrary man-

ner, except for conditions such as those of (30). Thus higher order distributed-

state models permit more degrees of freedom in the specification of the scattering

function. For example, a S(x, f) which exhibits multimodal behavior in f can be

obtained from a second or higher order state model.

2. A Realizable Optimum Detector

We shall now consider the simple binary detection of a signal transmitted over a

Gaussian doubly spread channel and received in white Gaussian noise. In com-

plex notation the two hypotheses are

H 1 : r(t) = s(t) + w(t)

(36)

H 2 : r(t) = w(t),

with s(t) given by (4), and the noise covariance by (3).

The optimum detector for a wide class of criteria compares the likelihood ratio
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with a threshold. One way to realize this detector is to compare the statistic'

1 f ^T
2N - s(t) 2+2 Re [s(t)r (t)]- p(t) dt (37)o2N T

with a threshold. The waveform s(t) is the minimum-mean-square-error realizable

estimate of s(t) in (2), and gp(t) is the filtering error

(t) = E[ s(t)-s(t) 2 ]. (38)

Thus if the realizable MMSE estimator for "'(t) can be found when the doubly spread

channel model is used, the optimum detector of (37) can be realized.

In order to obtain the MMSE estimate of s(t), the MMSE estimate of X(x,t) will

be derived first. This estimate is the result of the linear operation

^t

X(x, t) = Th (x,t, ) r(o) do t > T i,  (39)
1

where h (x,t, T) is the n X 1 matrix impulse response that minimizes the error-o
A A

(x,y,t) = E{[ X(x, t)- X(x, t)][ X(y, t)- X(y, t)] } (40)

for all x and y. The MMSE estimate of s(t) is then

s(t) = f(t--) C(c, t) X(o, t) do-, (41)

with

00 ? 0
p (t) = f(t-cr) C(c, t) ( a, t) C (a, t) f(t-a) dda. (42)

The derivation of the realizable MMSE estimator for the distributed state vec-
1, 3tor X(x,t) parallels that of Van Trees' 3 for the Kalman-Bucy filter. The result

is a modification of the estimator obtained by Tzafestas. 4

The starting point of the derivation is the generalized Wiener-Hopf equation 2 in com-

plex notation:

-00

- X = t,, < < t (43)

The left-hand side of (43) is E[ X(x, t)r (7)], and

QPR No. 93 184
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Kr(-,r) = E[r(ff)f*(T)]. (44)

Differentiating (43) with respect to t gives

aK (x, t; o, 7)
-xt

at C (-,7) f (T---) do- = h (x, t,t) Kr (t, T) +
ah (x, t, a-)

S at Kr(at
1

From (5) and (6),

aX(x,t) x(, ) F(x,
t) Kx (, t; cr, T)

-x

Then the left-hand side of (45), with the relation of (43), becomes

t) K (x,t; O-,T) C(r, r) f (T-o-) do- =
1

F(x, t) h 0 (x, t, cr)K r(o, T) do-

T. < T <t.
1

From (5) and (43), with T i < T < t, the first term on the right-hand side of (45) is

ho(x, t, t)Kr(t, T)

-o S' of(t-a)
-oo

C(a, t) K (a, t; cr, T) C '(-, T) f (T-a) do-da

= h (x,t,t) f(t-a) C(a,t) h (a, t, -) K (o-, T) dado-.
Substitution of (47) and (48) in (45) yields
1

Substitution of (47) and (48) in (45) yields

= F(x, t) h (X, t, r) + h (x,
- 00

t, t) f(t-a) C(a, t) h11 (a,t, a-) da.-o

Differentiation of (39) with respect to t and substitution of (49) give the differential

equation
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S00

_'0
T) dor

T. <T <t.1 (45)

T < t.

F(x,

(46)

(47)

a h (x, t, a-)-o
at

(48)

(49)

185



(IX. DETECTION AND ESTIMATION THEORY)

8X(x, t)
t F(x, t) X(x, t) + h (x, t, t)[r(t)-s(t)]8t -o

(50)

s(t) =S f(t-o) C(o, t) X(a, t) dr.

The MMSE estimate of X(x, t) is the solution of the distributed parameter differential

equation (50). The initial conditions are

X(x, Ti) = E[X(x, Ti)] = O. (51)

The homogeneous system in (50) is just that of the model for the generation of X(x, t).

The driving term in (50) is a scalar, r(t) - s(t), multiplied by a vector gain h (x,t,t).-o
The next section shows that h (x,t,t) does not depend on r(t). Thus the distributed esti--o
mator can be diagrammed as shown in Fig. IX-2. For the special case of the WSSUS

model, F(x,t) in (50) is replaced by F(x).

DISTRIBUTED
RICATTI
EQUATION F

Fig. IX-2. Realizable MMSE estimator for distributed-parameter
state-variable model.

3. An Equation for the Covariance Matrix

We shall relate the gain h (x, t, t) of (50) to the error covariance matrix _(x,y, t) of-o
(40). Then a differential equation for (x,y,t) is obtained. The derivation follows

3
Van Trees, with appropriate modifications to account for the complex distributed-

1,2
state model.

The optimum filter h (x, t, T) satisfies the integral equation
-O
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f (t-o-) do- = Nh (x, t, t)

+h
T. -oo00 -00

1i

(x, t, T) f(o-a) C(a) Kx(

(This is (43) for T = t. 3 ) From (40), (39), and (43),

(x,P3,t) = E SX(x, t) -
t

h 0(X, t, T) r(T) dr
1

(P[ , t) - h (, t, ) ?(T)-o

t c 0

= K (x, t; P, t) - h (x, t, cr) f(a--a) C(a) K (a, -; p, t) dado-.
-x o

1

(53)

Postmultiplying (53) by C (P)f (t-P), integrating over P, and combining the result with

(52) gives

h (x,t, t) = ( (x,o, ,t C (-, t) f (t-c) do-.
O -00

(54)

This specifies the gain h (x, t, t) in terms of the error covariance matrix.

The first step in obtaining a differential equation for (x,y,t) is to recognize from

(5) and (50) that the error

X (x, t) = X(x, t) - X(x, t) (55)

satisfies the differential equation
satisfies the differential equation

= F(x,t) X E(x,t) - h (x,t,t)-E -0 -00
00f(t-) c(-, t) X (T, t) dT

ooE

(56)+ G(x, t) U(x,t) - h (x, t, t) w(t).

Now

a (x,y,t)
at

a X (x,t)
E % X (y,t)at -E + EXE(x, t)

From (56) and (13), the first term in (57) is
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(52)

dlt

a X(x, t)

at

8 X (y,t)

at (57)

K (x, t; -, t ) C (-, t)
-x

a, o-;P, t) C (P) f (t-P) dadpdo-.
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a (x,t) 0 ~ Oo ~
E Xt ti (y, t) = F(x, t) (x,y, t) - h(x, t, t) - f(t-0-) C(0-, t)(, y, t) do-

-00

N
+ G(x, t) Q(x, y, t) G(y, t) h (x, t t) -h (y,t,t) (58)2o 2 - o, _ , , _

Evaluating the other term in (57) in like manner gives the distributed differential equa-

tion for the error covariance

8a(x,y,t)
= F(x, t) (x, , t) + (x , t) F (y , t) + G (x , t) Q (x , y, t) G (y , t)

1 ft 1 00
N 0(x, o,t t C ( t)f t-) do- f(t-o-) C(a,t) (a,y,t) da. (59)
o -oo -oo

The initial condition for (59) is

(x,y,T.) = K (x, Ti; , T.)
1 -x 1 1

(60)
SP.(x, y).

-1

From (54) and (59), it is evident that h (x,t,t) does not depend on r(t). Further--o
more, ho(x,t,t) can be computed in principle from (54) and (59), since the right-

hand side of (59) at any time t' depends only on (x,y,t') and the known matrices

of the model. Given h 0(x,y,t), the filtering error p(t) of (42) and its integral over

the observation interval can be found. The latter quantity is useful in evaluating

bounds on and asymptotic expressions for the detection error probabilities. 2

For the special case of the WSSUS channel model, (54), (59), and (60) reduce to

h (x,t, t) = ( , -, t) (o-)f (t-a-) do- (61)
o -o00

8 g(x,y,t)
-t Y= F(x) _(x,y, t) + (x, y, t) F (y) + G(x(x) Q(x) G (x) 6(x-y)at

- Y- (x, -, t) C (a) f (t-a-) do- f(t-a) C(a) g(a,y,t) da (62)
o -oo - -oo

_(x, y, T) = K (x) 6(x-y), (63)
1 o

where K (x) is specified by (27). If a solution of the form-o
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(x,y,t) = i(x,t) 6(x-y) + p(x,y, t) (64)

is assumed and substituted in (62), application of the initial condition (63) gives

~,(x,t) =K (x) (65)
-1 -o

(66)+ p(x, ,t)C (o) f(t-o-) do
o --00

h (x,y, t) K ) (x)f (t-x)-o N-o

= F(x) p(x, y, t) +

N o

f(t-

p(x,y,t) F t(y)

p(x, c, t) C (a) f (t--) do-

C(0-) p(a, y, t) doj

p(x,y, T) = 0. (68)

4. Comparison of the Distributed Model with a Tapped Delay

Line Model for the WSSUS Channel

We shall now relate the distributed-parameter state-variable model to a tapped

delay line model for the WSSUS channel. Various tapped delay line models have

been suggested for this channel. 5 One of them is derived by assuming that f(t) is

strictly bandlimited to W Hz.

00

f(t-x) =
i=-oo00

where W > W. From (4)
s

oo

s(t) = t --
i---i

Then, from the sampling theorem,"

sin TW x -s W
s

Tr x -
)s

f(t - i )

~ i
y W

s

1
W s

where the tap gain processes are defined as
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ap(x, y, t)
at

~ f , 00

000

y) C(y) K (Y) + 0f(t--)Oo
(67)

(69)

(70)
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sin rrW x-

y ) = Y(x, t) ( dx. (71)

From (19), the cross-covariance functions for the y , t ares

sin rW x- sin TrW x -

s 
s= KD(X, t-r) dx. (72)

For large values of Ws , (72) can be written 5

~ 1
DK W t- + = 

- 0 i 4 j (73)

where 0( consists of terms that disappear faster than 1/"W s-.
s s

Equation 70 is a tapped delay line representation of the channel with an infinite

number of taps spaced 1/W s sec apart. A realizable approximation to this model

is a tapped delay line with a finite number of taps. If KD(x,-T) is essentially zero

for D < x < 0, then (70) will be approximately

L
s(t) a (t ) =O t- y W (74)

i= 0

where L = DW
s

Van Trees 2 has pointed out that the approximate model of (74) can be described

in terms of a lumped-parameter state-variable representation. This is accomplished

by letting the y , t be components of the vector y(t) which is the output of

of the system
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dx(t)
dt F x(t) + G u(t)

dt -s- -s

y(t) = C x(t) (75)
_ --

E[ U(t)ut ()]= Q s(t-7),

where y(t) is (L+1) X 1, x(t) is N X 1, u(t) is P X 1, with N > L + 1 and P > L + 1. It is,

however, not evident how to pick C , F , G and Q to obtain the covariance matrix spec--s -s -s -s
ified in (72) or under what conditions on KD(x,T) such a choice is possible.

The parameters of the state-variable model of (75) can be found if a further approx-

imation is made. Equation 73 indicates that the tap gains become uncorrelated as 1/W s

approaches zero. This suggests modifying the model of (75) so that the y ,t)

are uncorrelated for finite W s . This can be accomplished with the system

x.(t)= F.x.(t) + G.u.(t)

i= 0,... , L+1 (76)

y -t = C xi(t)

uQi(t)u(j (t-T) i=j

-1 -

with

E , t T)]= Ws KD t-T . (77)

The vectors x (t) and i(t) have dimension N. and Pi., respectively. Adjoining the x.(t)
-1 -1 1 1-1

and yi(t) gives the composite vectors x(t) and y(t) in (75), along with F , C' , G s

and Q . In order to specify these matrices, (77) indicates that the scattering func-

tion associated with KD(x, T) should be a rational function of f at x = i/Ws
The lumped-parameter state-variable model of (76-77) is an approximation to the

tapped delay line WSSUS model (70-72) under the assumptions of a finite number of

taps and uncorrelated tap gains. As the tap gain spacing goes to zero, this model

converges to the distributed-parameter state-variable model of the WSSUS channel,

provided that each subsystem in (76) is of the same dimension, N. = n. For, if

x = i/W s and W - oo (hence L - oo), then y(- t - Y(x,t), x(t) - X(x,t), and the
s s W -1s
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sum in (70) becomes the integral of (4). The differential equations for x.(t) are replaced
1

by the distributed equation (22). The estimator and error covariance differential equa-
2

tions associated with (76-77) converge to those for the distributed model, (50) and (62-
63). The spatial impulse associated with Q(x) in (62) comes from the limit of (77).

5. Conclusion

We have presented a distributed-parameter state-variable model for a doubly spread
Gaussian channel, and discussed the special case of the WSSUS channel.

We have outlined the derivation of the realizable MMSE estimator for the

distributed-state vector of the channel when a known narrow-band signal is transmitted

over the channel and received in additive white Gaussian noise. The optimum detector

for this channel can then be specified in terms of this state estimate. A distributed dif-
ferential equation is given for the error covariance matrix associated with the optimum

estimate. Solution of this equation provides the filtering error, which in turn permits

calculation of detection error probability bounds.

An approximate, tapped delay line, lumped-parameter state-variable model for the

WSSUS channel has been reviewed, which converges to the distributed model as the

delay line tap spacing goes to zero.

Computational methods for solving the distributed-parameter error covariance equa-

tion are being investigated. For example, integration of Eq. 62 at discrete values of x

and y is equivalent, under some circumstances, to solving the variance equation asso-

ciated with the tapped delay line model. More efficient techniques may be applicable to

the distributed model, however. Another advantage of the distributed formulation is

that it provides a way of handling the impulsive quantities arising from the spatially

white character of the channel model, as in Eqs. 64-68.

R. R. Kurth
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B. AN APPLICATION OF STATE-VARIABLE ESTIMATION TECHNIQUES

TO THE DETECTION OF A SPATIALLY DISTRIBUTED SIGNAL

1. Introduction

The problem that we consider is a spatial version of the Gauss-in-Gauss detection

problem. We have taken a distributed state-variable approach to this problem, rather

than the more usual eigenfunction approach. Our motivation is that state-variable models

have provided useful insight and receiver realizations for the nondistributed case. The

purpose of this report is to indicate the current status of this study.

2 : CLOUD SURFACE

S= S U 
2 Ue

R R: REGION ENCLOSED BY S

A: SENSOR APERATURE

Fig. IX-3. Model geometry.

An example of the spatial Gauss-in-Gauss detection problem arises in the optical

cloud channel when the quantum effects associated with physical detectors are neglected.

The geometry associated with this example is shown in Fig. IX-3. The model comprises

(i) a free-space region 9 that supports propagation from the cloud surface r to

the receiving aperture d ;

(ii) surfaces S1 and S2, which with ' completely enclose the region R. The cloud

is illuminated by a source located somewhere above the cloud and exterior to the region

,. The resulting field on the bottom surface of the cloud will then excite a field through-

out the region 9. This field, which we call m, is described below.

2. Message Field State Equation

Let {m(t,r), t e Y-, r G } be a distributed scalar noise field with J- = (0, T] as

its temporal domain, and the region R as its spatial domain. Let S be the surface

enclosing $. We assume that m satisfies the wave equation

2

2 m(t, r) = Am(t,r), t -, re (1)
at

in which A is the Laplacian. By defining the two states, m i = m and m 2 = am/at, the

wave equation (1) for m can be expressed as
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a
aT m(t, r) =F m(t, r), t e r Eq

in which

Im

and F is a differential operator defined by

0 1
The state satisfies appropriate initial and boundary conditions on all boundary sur-

faces, and, in particular, the state is driven by a boundary condition at the cloud sur-
face. These conditions will be described.

(i) Message Field Initial Conditions

Let the initial state m be

m(O, r) = m (r) , r G ,

where m 0 is a Gaussian noise field with mean m (r ) and covariance

E[( (r)- 0(r))(m (r)- 0(r)) ] = M(r, r'), r, r' .E rII , T

(ii) Message Field Boundary Conditions

The boundary conditions will be described with reference to Fig. IX-3.

on the cloud's surface is characterized by the state {x(t,r), t E , r c-q},
Gaussian-Markov process defined by

a
--- x(t,r) =A(t, r) x(t, r) + B(t, r) u(t, r),

The process

which is a

t E r7 r , (4)

where {u(t, r), t E r E '} is a white Gaussian process with covariance

E[u(t, r)u(t', r')] = U6(t-t') 6(r-r'), t, t' E $7-, r, r' EI .

The initial condition for (4) is

x(O, r) = x (r), r E_ ,

where x is Gaussian with mean x (r) and covariance
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E[(x(r)-x (r))(x (r')-x (r'))] = X(r, r'), r, r' e .

We now impose the following boundary conditions:

(i) m (t,r) - a -m(t, r) = C(t, r) x(t, r). t E J, r EW (6)
1(i) ml(tr)- c  mi , 

This describes the coupling of the signal-induced noise field on the cloud's surface to the

field m in the cloud-to-sensor channel. The constant a is non-negative (a c 0), and

8/8Tl denotes the inward-directed normal derivative at the boundary.

(ii) m(t, r) - a1  ml(t,'r) = 0 t E , re 1. (7)

S1 is the surface in the proximity of the sensor: for example, the earth's surface.

We assume that this surface does not interact with the field seen by the aperture,

(iii) lim r m(t, r)-a mI(t, r) = 0, t , re =. (8)

S2 is a spherically shaped surface. Equation 8 is the Sommerfeld radiation condi-

tion.

This model provides a reasonable first-order description of the optical field at the

"bottom" surface of a cloud. At optical frequencies a cloud is dispersive in time, fre-

quency, and angle. A recent theoretical study has established that, for an optically thick

cloud (optical thickness > 5), the field below the cloud is reasonably modeled as a zero-

mean Gaussian process in time and space. In terms of a complex envelope representa-

tion, the real and imaginary parts are independent jointly Gaussian random processes

with identical covariance functions. The field intensity also has spatial properties. For

instance, if the incident intensity has a symmetrical Gaussian spatial distribution, the

spatial distribution, the spatial dependence of the mean-square value of the field below

the cloud has a symmetrical Gaussian shape, with a variance depending on the incident

intensity variance and the cloud parameters (physical thickness, optical thickness, and

particle scattering pattern). Furthermore, the spatial correlation distance of the field

at a receiving place below the cloud is very small (of the order of wavelengths).

According to the study, the Doppler spread of a typical cloud is of the order of mega-

cycles, and the corresponding range spread is in the microsecond range. Thus the cloud

channel is typically overspread.

In the model used here, it is assumed that the signal-bandwidth range-delay is small,

so that the range spread is not important. For example, the signal may be a pulse that

is long relative to the range spread. The Gaussian-Markov process x(t, r) is used to

model, in a first-order way, the Doppler spread and spatial correlation properties of
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the field at the bottom of the cloud. The modulation matrix C(t, r) can be used to model

the spatial intensity distribution at the cloud "bottom," as well as the amplitude varia-

tions of the transmitted signal and any deterministic, possibly position-dependent, delay.

For simplicity, only a single polarization component of the field is assumed.

The techniques to be used here could be applied to a more realistic cloud model. It

would be possible to account for the range spread and to approximate more accurately

the Doppler spread and spatial correlation properties by incorporating a more compli-

cated propagation model for the cloud, for example, a doubly spread channel model. This

is deferred for the present to concentrate on the form of the estimation problem.

3. Detection Problem

We wish to consider making observations of the field in 9P and then deciding whether

or not m(t, r) is present, that is, whether or not the cloud is illuminated. The observa-

tions are taken with a sensor having an aperture s/, and there is a white Gaussian back-

ground noise n(t, r) representing scattered light. The observations are defined by

m (t, r) + n(t, r) t e j, r c a: HI

e(t,r) n(t, r) t E j, r E : H0  (9

where n(t, r) is white Gaussian noise with covariance

E[n(t, r)n(t',r')] = N06(t-t') 6(r-r'), t, t' E / , r, r' E J .

Because of the Gaussian model, the general detector structure for deciding between H 0
and H 1 is well-known.1 One version of the detector incorporates the noncausal,

minimum-mean-square-error estimator of {ml(t, r), t E -7, r E }; this estimator is

designed under the assumption that {e(t, r), t E J-, r e i} is given and H is true. This

is the estimator-correlator structure shown in Fig. IX-4. The constant y is a prede-

termined constant that depends on the particular criterion by which the detector's per-

formance is judged.

The estimator required to generate the optimal estimate can be specified as the solu-

tion of an integral equation involving the covariance function of m I in the aperture d.

This covariance function can presumably be determined from the model that we have for-

mulated. Even if the covariance function is known, however, the integral equation for the

estimator may be difficult to solve. This is because m I will not have the covariance of a

lumped-parameter process, because of the inherent coupling between time and space

associated with the wave equation. An alternative procedure is to derive equations that

determine estimates directly. We shall explore this latter state-variable approach.

The rest of the discussion is concerned with this estimator, the form of which was

determined by using the technique of minimizing a quadratic functional containing
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H1

Noncausal MMSE m(t,r)
Estimator of

ml(t,r
) on H 1

Fig. IX-4. Estimator-Correlator receiver.

Lagrange multipliers to account for constraints. These are the constraints, for

example, of the propagation model and boundary conditions. This technique has been

used previously by Bryson and Frazier 3 and Baggeroer. 4

4. Estimation Problem

The relevant estimation problem is that of estimating {ml(t,r),t e -, r e /}, given

{e(t, r),t 7, rE.5/}, where e(t, r) = m (t, r) + n(t, r). It is convenient for us to rewrite

e(t, r) as

e(t,r) = H(r) m(t, r) + n(t, r), t E -, r E , (10)

where

H(r) = [1(r) 0]

and

(r)= 
r

0, r 9

The first step in obtaining equations for the desired estimate is to reduce the esti-

mation problem to a problem of minimizing a quadratic functional. The desired equa-

tions are then obtained by carrying out the minimization, using Lagrange multipliers to

account for constraints on the minimizing solution.

The quadratic functional to be minimized is

1 T -1
J ~ f [m0(r)-m0(r)] M (r, r')[m0)-m0(r')] drdr'

1 2 --+ J u2(t, r) dtdr + X Jr  [X ( )-x0(r)]T X (r, r')[X0(r')-x(r' )] drdr'

+ 1f f [e(t,r)-H(r)m(t, r)] dtdr. (11)

In Eq. 11, the two terms M-l (r, r') and X-l (r, r') are inverse kernels satisfying

f M(r, r") M- (r",r') dr" = I6(r-r'), r, r' ~E (12)
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and

X(r, r") X- (r", r') dr" = I6(r-r'), r, r' e~.

The minimization of J is subject to the following several constraints:

1. a m(t, r) = Fm(t, r),t -

2. m(0, r) m (r),

3. a-x(t, r) = A(t, r) x(t, r) + B(t, r) u(t, r),

4. x(, r) = x (r), r E

a
5. ml(t , _r) - a -L m (t, r) = C(t, r) x(t, r),1 c al 1

a
6. ml(t,r)- a 1 - m (t,r) = 0,

lim
r I -oO

t E Y, r E

t e , r G

t E , r E W

t E ., re

r m l r(t, rr)-2 m (t 0, t E , re ~2, r! = .

We now incorporate these seven constraints into J by using Lagrange multipliers:

fq [m 0 (r)-m 0 (r)] T M 1 (r, r,)[m0(r')-m0(r')] drdr'

+ j f u 2 (t,r) dtdr + If, f V [x 0 ((rx 0 (r)]T X-l (r, r')[x0 (r')- 0 (r')] drdr'

+ I1 J- [e(t,r)-m (t,r)]2 dtdr+ f_ p
- 9 - Sdtdr

+ f _T (r)[m(o, r)-m (r)] dr

+ (t, r) x(t, r)-A(t, r)x(t, r)-B(t, r)u(t, r) dtdr

+ J- j l(t,r

+ J k 2 (t, r) m l (t, r)- a1  m l (t, r) dtdr

+ R-im f i2 k3(t, r) r ml(t,r)-a 2  - m(t, r) dtdr.

Before carrying out the minimization of J, there are several terms to be examined.
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(14)

(15)

(16)

(17)

(18)

(19)

(20)

J = f (21)

It

m (t r)- a a m (t , r ) - x( r)x(t,r) dtdr
c -1
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We simply list the results that we need.

(t, r) a m(t, r) dtdr = [pT(T, r)m(T, r)-pT(0, r)m(0, r)] dr

LapT (t, r) m(t, r) dtdr

pl(t, r) m 2 (t, r) dtdr +

p (t, r) m 2 (t,_ r) dtdr +

P2(t, r) Am l ( t , r ) dtdr

m 1 (t, r) Ap2(t, r) dtdr

2(t, r) Lml(t, r) dtdr

m(t, r) PZ(t, r) dtdr

( a l
P2(t, r) -a m (t, r) dtdr

+
-

T T r
m (t, r)F p(t, r) dtdr + L

The last result follows from Green's second identity, and in it S = S1US 2U is

surface enclosing 9?.

q T(t, r) x(t, r) dtdr3.

(23)

the

[qT(t, r)x(t,r)-qT(O, r)x(O, r)] dr

-8t- q (t, r)

We now incorporate

x(t, r) dtdr (24)

these results into J, set the variation of J to zero at the
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1. pT

(22)

= sY

7- jR

2. y p T (t, r) F m(t, r) d t d r

SS,

m(t, r) p2(t r) dtdr

1l t r - j P2(t'- -

=

? ?

JIS,
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optimizing values, and collect the terms common to each variation. The result is

=T L - s; s, m (r)l p0(r) -

5u(t,r)[U-1u(t, r)-B (t, r)q(t, r)] dtdr

- 6x 0( -

T 
a6 M (t, r)

T
6m (T, r) p(T, r)

(25)

X (r, r')[-0 (r'~ 0(r')] dr' dr

T T -xI d
(t, r) + FT p(t, r) + HT (r) N [e(t, r)-H(r)mn(t, r)] dtdr

Idr- 6m(O,r)[p(O, r)-PO(r) ] dr

6 ml(t, r)[p2(t, r)+al 2(t,r)] dt dr6- ~ _ irt +I

-lim
R-oo-8 2

a m (t, r)[p (t, r)+a2 r 3 (t, r)] dtdr86 1 2 2 _ ,_ _

- 6 a ml(t, r)[p 2 (t, r)+acX (t, r)] dtdr
3-r,

+ lim S
R-oo y 2

6ml(t, r) - p2 (t,r)+ kl(t, r) I dtdr +
T( TWx (T, r) q(T, r) dr

6x T(t, r) [q(0, r)-q 0(r)] dr

+CT (t, r)k 1(t, r) g dtdr.

Because of the arbitrariness of the variations, we get several conditions on the
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+

+

+

r)] dtdr

-1 -(r '[_ (r')-m (r')] dr, dr

- 1

m(t, r) P2 (t, r)+ 2(t, r) dtdr
Ty

+ Y
ml(t, r) a (t, r)+ r I k3(t ,

1m~tr - P2 - 3

8x T(t, r) t q(t, r)+ A T(t, r) q(t, r)Si
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optimizing solution and the Lagrange multipliers. We also use the fact that noncausal,

minimum-mean-square-error estimation commutes with linear operations.

a. Field Estimation Equations

The estimate of the state of the field m and the corresponding Lagrange multiplier

p satisfy

m(t, r) F

I H T -1
p(t, r) H (r) N0 H(r)

0 7 (t, r) 0

F I I 1+ e(t,r -1-F p(t, r) LHT(r) N e(t

-- F T L~t,:)0

t E, red

(26)
with the following ancillary conditions:

(i) Initial condition

p(O, r) = M 1 (r, r')[m(0, r')-Fm0 (r')] dr'.

The inverse kernal M- I can be eliminated by multiplying by M

The result is the initial condition

and integrating.

(27)

The

m(0, r) = ro(r)+ y

(ii) Final condition

p(T, r) = 0,

M(r, r') p(0, r') dr',

re .

(iii) Boundary conditions

m l (t, r)- al - m l (t, r) = 0,
a

p 2 (t,r)- a1 - P 2(t,r) = 0, t e , r Ec

I_ 1(t r)- a 2 1 (t, r ) = 0, lim
IrI-oo

P2(t, r)- a 2  P 2 (t, r) = 0,

t E J, r E 2 , r = R

m(tr) - ac a- (t, r)=
1 c iy 1 tr =

p (t, r) - ac-i P 2 (t, r) = 0,2 c a8 P
t E J, rE

(32)

Note that Eq. 26 is excited by e, which is the field in the aperture. There are three

important points to made about this equation.

QPR No. 93

r E E. (28)

lim
Ir I-oo

(29)

(30)

(31)

C (t, r) x(t, r),
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(i) It is a partial differential equation because F is a spatial differential operator.

(ii) The form of the equation is identical to that for a nondistributed system, except

that here F is an operator.

(iii) m satisfies the same wave equation as the field m.
A

Furthermore, the estimate, m, is driven by a boundary condition at the cloud's surface,

as was m. Here the boundary condition involves the estimate of the state associated with

the cloud process. The generation of this required estimate is described next.

b. Cloud Estimation Equation

The estimate of the state of the cloud process x and the corresponding Lagrange

multiplier q satisfy

a (t, r) A(t, r) B(t, r) UB (t, r) 0(t, r
= p 2 (t, r) t 8 r

q(t, r) 0 -A (t, r) q(t, r ) T(t, r)

L - (33)

with the following ancillary conditions:

(i) Initial condition

-1Iq(0O,r) = X-l(r,r')[ x(0,r')-x (r)] dr'. (34)

As before, the inverse kernel can be eliminated to obtain the initial condition

x(O, r) = x(r) + X(r,r')q(0,r')dr', r E C. (35)

(ii) Final condition

q(T, r) = 0, re . (36)

Equations 26-36 define m, p, x, and q in terms of a two-point boundary-value prob-

lem. The equations are difficult, if not impossible, to solve analytically, and moreover,

direct implementation of a processor to generate the solution is not possible because

of the presence of both the initial and final value conditions. To circumvent this

difficulty, we now convert the two-point boundary-value problem into an initial

value problem whose solution can be generated causally. This is possible because

of the linearity of the equations. For this purpose, we let m, p, x, and q be solutions

to (26) and (33), subject to the following initial conditions:

m(0, r) = r 0 (r), re (37)
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(38)

(39)re-

The boundary conditions for these functions will be defined as we proceed.

(40)

We also

define eight matrices ( , ( , I , ) , ( , 4 , 4 ,
-mp' mq' pp' pq' xp' xq -qp

homogeneous versions of (26) and (33):

and 1 by the following
-qq

r') F

r') (r) N 1H(r)

r")j

r') HT (r) N 1 H(r)
0 - -

0 (- p(t,r, r

-J Lp

TI
-F

(trr') A(t,r) B(t,r) UB (t,r)-xp

(trr') -A T(t,r)
-qp -

t E , r, r' e

te , r , r'

r)

T

T (t,r)

t E J-, r E 6, r' E

B(t,r) UB T(t,r)

-AT(t, r)

(t,r,r')l 0-xq -
+

q (t,rr') CT(tr)

t 7, r, r' E le

The initial conditions for these eight matrices will be taken to be

i mp(0, r, r') = M(r, r')
- mp

-pp, r,

xp(0, , r') =

a (0, r, r') = 0
-qp

a (0, r, r') = 0-mq

q (0, r, r')= 0

_xq(0, r, r') = X(r, r')

S (0, r, r') = I6(r-r').
-qq -

We now express
We now express rn, p, x, and q in terms of these defined
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p(O, r) = 0,

X(0, r) = 0(r),

q(O, r) = 0,

(41)

(42)

and

at
q(t,r,r')

_q (t,r,r')
-qq

(43)

(44)

quantities. The

8 pp
[0 1]-- %pt~rr )

[o0 1] a ( (trr)
89, p q

°
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m(t,r) = m(t,r)+ f D (t,r,r) p(0,r') dr' + f b (t,r,r,)q(0,r,)dr', t E ~, r e
S -mp - -mq

(45)

p(t,r) =p(t,r) + f pp(t,r,r')p(0,r') dr' + f . (t,r,r') q(0,r') dr', t e , re

(46)

x(t,r)= x(t,r)+ f D (t,r,r')p(0,r') dr' + f D (t,r, r')q(O,r) dr', t -, r E
S -xp - -xq

(47)

q(tr)q( t(t,r)+ f qp(t, r,r')p(0,r') dr' + f qp(t,r,r') q(O,r') dr', t E , r E- .
- -qp - -qp

(48)

It is straightforward to verify by direct substitution that the definitions for m, p,

x, q and the eight matrices are consistent in the sense that (45) and (46) imply m, p,

x, and q continue to satisfy (26) and (33). Moreover, the assumed initial conditions are

likewise consistent. In order to obtain a consistent set of boundary conditions, we

simply substitute (45) and (46) in Eqs. 30-32. The resulting boundary conditions on

S1 and S2 are all homogeneous. The conditions that we obtain on V are

(i) m (t, r) - a- m (t, r) = C (t, x) x(t, r)

a-(ii) p 2 (t, r)- a 2 8 P 2 (t,r)= 0

(iii) [0 1] ' (t, r,r')- a (t,r, r') = 0 r'
-pp c -- -pp

(iv) [0 1] (t, r, r') - a - (t, r, r') = 0, r' E
-pq c a, -pq

(v) [1 0] mp(t,r, r') - a ( (t,r,r') = C (t,x) (P (t,r,r'), r' E-mp c a -mp xp

(vi) [1 0] D (t, r, r') - a ( (t,r,r') = C (t, x) (t, r, r'), r' ,
-mq c 7, mq xq

for t E J-, r E R. Note that the last two conditions couple the solutions to (43) and (44).

5. Concluding Comments

The important aspect of Eqs. 45-48 is that m^, p, x, and q can be expressed in

terms of a part (the tilde quantities) that can be generated causally as data arrive,

and an additional part that can be computed after the final observation time. This

additional part depends on precomputed quantities, the c's, and the final values of

the causal parts. The causal processing involves partial differential equations driven

by the data received in the aperture. An important topic requiring further investigation
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is the procedure for generating the solutions to these equations; a method for simulating

them on a reduced spatial scale would be desirable. For instance, the propagation

implied by the wave equation for m might be realized optically.

An additional topic requiring further investigation is the possibility of simplifying the

processing required to generate the noncausal estimate needed in the detector.

D. L. Snyder, E. V. Hoversten
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