1,004 research outputs found
Probing the centre of the large circumstellar disc in M17
We investigated the nature of the hitherto unresolved elliptical infrared
emission in the centre of the ~20000 AU disc silhouette in M 17. We combined
high-resolution JHKsL'M' band imaging carried out with NAOS/CONICA at the VLT
with [Fe II] narrow band imaging using SOFI at the NTT. The analysis is
supported by Spitzer/GLIMPSE archival data and by already published SINFONI/VLT
Integral Field Spectroscopy data. For the first time, we resolve the elongated
central infrared emission into a point-source and a jet-like feature that
extends to the northeast in the opposite direction of the recently discovered
collimated H2 jet. They are both orientated almost perpendicular to the disc
plane. In addition, our images reveal a curved southwestern emission nebula
whose morphology resembles that of the previously detected northeastern one.
Both nebulae are located at a distance of 1500 AU from the disc centre. We
describe the infrared point-source in terms of a protostar that is embedded in
circumstellar material producing a visual extinction of 60 <= Av <= 82. The
observed Ks band magnitude is equivalent to a stellar mass range of 2.8 Msun <=
Mstar <= 8 Msun adopting conversions for a main-sequence star. Altogether, we
suggest that the large M 17 accretion disc is forming an intermediate to
high-mass protostar. Part of the accreted material is expelled through a
symmetric bipolar jet/outflow.Comment: 6 pages, 3 figures, accepted by MNRAS (16 May 2008
A multiwavelength study of young massive star forming regions: II. The dust environment
We present observations of 1.2-mm dust continuum emission, made with the
Swedish ESO Submillimeter Telescope, towards eighteen luminous IRAS point
sources, all with colors typical of compact HII regions and associated with
CS(2-1) emission, thought to be representative of young massive star forming
regions. Emission was detected toward all the IRAS objects. We find that the
1.2-mm sources associated with them have distinct physical parameters, namely
sizes of 0.4 pc, dust temperatures of 30 K, masses of 2x10^3 Msun, column
densities of 3x10^23 cm^-2, and densities of 4x10^5 cm^-3. We refer to these
dust structures as massive and dense cores. Most of the 1.2-mm sources show
single-peaked structures, several of which exhibit a bright compact peak
surrounded by a weaker extended envelope. The observed radial intensity
profiles of sources with this type of morphology are well fitted with power-law
intensity profiles with power-law indices in the range 1.0-1.7. This result
indicates that massive and dense cores are centrally condensed, having radial
density profiles with power-law indices in the range 1.5-2.2. We also find that
the UC HII regions detected with ATCA towards the IRAS sources investigated
here (Paper I) are usually projected at the peak position of the 1.2-mm dust
continuum emission, suggesting that massive stars are formed at the center of
the centrally condensed massive and dense cores.Comment: 6 figures, accepted by Ap
2.3 micron CO emission and absorption from young high-mass stars in M17
We are studying the extremely young cluster of M17 to investigate the birth
of high-mass stars and the initial mass function. Deep JHKL imaging and K-band
spectroscopy from the VLT of 201 stars toward the cluster is presented. The
majority of 104 stars show the CO band-head in absorption. Half of them emit
X-rays and/or have infrared excess, indicative of very young objects. Their
intrinsic IR luminosity is compatible with intermediate and high-mass pre-main
sequence stars. Nine additional stars have the CO feature in emission, while
sixty sources are lacking any stellar spectral feature due to veiling by
circumstellar dust. We suggest that CO absorption is - as in the case of
low-mass stars - also a common feature during the early evolution of stars with
higher masses. According to model calculations the observed CO absorption is
most likely a sign of heavily accreting protostars with mass accretion rates
above 10^-5 solar masses/yr.Comment: 4 pages, 3 figure + 1 online figure, accepted for publication in A&
Metodologia de determinação do pH da temperatura da cama de aviário em tempo real.
Projeto: 03.07.09.049
Avaliação de isolantes térmicos com potencial uso em aviários.
Projeto/Plano de Ação: 03.07.94.900-04
Temperatura superficial de isolantes térmicos e cortinas para a produção animal.
Projeto: 03.07.09.049
Molecular mechanism of tanshinone IIA and cryptotanshinone in platelet anti-aggregating effects: an integrated study of pharmacology and computational analysis.
Tanshinone IIA and cryptotanshinone are two pharmacologically active diterpenoids extracted from the roots of Salvia milthiorriza Bunge, a plant used in Chinese traditional medicine for the treatment of some cardiovascular and cerebrovascular disease. Until now, the molecular mechanisms of action of these two diterpenoids on platelets are partially known. To clarify this aspect, here we utilized an integrated study of pharmacology and computational analysis. Our results demonstrate that cryptotanshinone is able to inhibit in a concentration dependent manner the rat platelet aggregation and also is endowed of Gi-coupled P2Y12 receptor antagonist as demonstrated by docking studies. This computational method was also performed for tanshinone IIA demonstrating even for this diterpenoid an interaction with the same receptor. The findings from our study enable a better understanding of tanshinone IIA and cryptotanshinone biological properties, which could ultimately lead to the development of novel pharmaceutical strategies for the treatment and/or prevention of some cardiovascular disease
- …