139 research outputs found

    Ureteral duplication with intrasinusal ureteral junction and epididymal ureteric ectopia

    Get PDF
    We report a case of 47-year-old adult male who presented with episodic unilateral scrotal swelling associated with dragging pain,with a history of spontaneous resolution and associated non-colicky right flank pain. On evaluation, he was diagnosed to haveureteral duplication with intrasinusal ureteral junction and epididymal ureteral ectopia. Treatment included laparoscopic right lowerpole nephrectomy for the thinned out draining segment with ectopic ureterectomy. In literature, very few cases of ureteral duplicationin an inverted Y have been reported. In such cases, epididymal ureteral ectopia has been found to be extremely rare. Here, in thiscase, uncharacteristic symptoms mimicking chronic epididymo-orchitis, diagnostic difficulties and findings are described

    Involvement of Trichoderma harzianum Epl-1 Protein in the Regulation of Botrytis Virulence- and Tomato Defense-Related Genes

    Get PDF
    [EN] Several Trichoderma spp. are well known for their ability to: (i) act as important biocontrol agents against phytopathogenic fungi; (ii) function as biofertilizers; (iii) increase the tolerance of plants to biotic and abiotic stresses; and (iv) induce plant defense responses via the production and secretion of elicitor molecules. In this study, we analyzed the gene-regulation effects of Trichoderma harzianum Epl-1 protein during the interactions of mutant ∆epl-1 or wild-type T. harzianum strains with: (a) the phytopathogen Botrytis cinerea and (b) with tomato plants, on short (24 h hydroponic cultures) and long periods (4-weeks old plants) after Trichoderma inoculation. Our results indicate that T. harzianum Epl-1 protein affects the in vitro expression of B. cinerea virulence genes, especially those involved in the botrydial biosynthesis (BcBOT genes), during the mycoparasitism interaction. The tomato defense-related genes were also affected, indicating that Epl-1 is involved in the elicitation of the salicylic acid pathway. Moreover, Epl-1 also regulates the priming effect in host tomato plants and contributes to enhance the interaction with the host tomato plant during the early stage of root colonizationSIThis work was supported by the State of São Paulo Research Foundation (FAPESP) (Proc. 2012/16895-4, Proc. 2013/24452-8, and Proc. 2016/04274-6). Funding was also obtained from the Junta de Castilla y León, Spain (LE228U14) and the Spanish Government Grants from Ministerio de Economía y Competitividad (AGL2012-40041-C02-02 and AGL2015-70671-C2-2-R

    Forward Analysis and Model Checking for Trace Bounded WSTS

    Full text link
    We investigate a subclass of well-structured transition systems (WSTS), the bounded---in the sense of Ginsburg and Spanier (Trans. AMS 1964)---complete deterministic ones, which we claim provide an adequate basis for the study of forward analyses as developed by Finkel and Goubault-Larrecq (Logic. Meth. Comput. Sci. 2012). Indeed, we prove that, unlike other conditions considered previously for the termination of forward analysis, boundedness is decidable. Boundedness turns out to be a valuable restriction for WSTS verification, as we show that it further allows to decide all ω\omega-regular properties on the set of infinite traces of the system

    Composition of dissolved organic matter within a lacustrine environment

    Get PDF
    Freshwater dissolved organic matter (DOM) is a complex mixture of chemical components that are central to many environmental processes, including carbon and nitrogen cycling. However, questions remain as to its chemical characteristics, sources and transformation mechanisms. Here, we employ 1- and 2-D nuclear magnetic resonance (NMR) spectroscopy to investigate the structural components of lacustrine DOM from Ireland, and how it varies within a lake system, as well as to assess potential sources. Major components found, such as carboxyl-rich alicyclic molecules (CRAM) are consistent with those recently identified in marine and freshwater DOM. Lignin-type markers and protein/peptides were identified and vary spatially. Phenylalanine was detected in lake areas influenced by agriculture, whereas it is not detectable where zebra mussels are prominent. The presence of peptidoglycan, lipoproteins, large polymeric carbo- hydrates and proteinaceous material supports the substantial contribution of material derived from microorganisms. Evidence is provided that peptidoglycan and silicate species may in part originate from soil microbes

    Botrydial and botcinins produced by Botrytis cinerea regulate the expression of Trichoderma arundinaceum genes involved in trichothecene biosynthesis

    Get PDF
    Trichoderma arundinaceum IBT 40837 (Ta37) and Botrytis cinerea produce the sesquiterpenes harzianum A (HA) and botrydial (BOT), respectively, and also the polyketides aspinolides and botcinins (Botcs), respectively. We analysed the role of BOT and Botcs in the Ta37-B. cinerea interaction, including the transcriptomic changes in the genes involved in HA (tri) and ergosterol biosynthesis, as well as changes in the level of HA and squalene-ergosterol. We found that, when confronted with B. cinerea, the tri biosynthetic genes were up-regulated in all dual cultures analysed, but at higher levels when Ta37 was confronted with the BOT non-producer mutant bcbot2Δ. The production of HA was also higher in the interaction area with this mutant. In Ta37-bcbot2Δ confrontation experiments, the expression of the hmgR gene, encoding the 3-hydroxy-3-methylglutaryl coenzyme A reductase, which is the first enzyme of the terpene biosynthetic pathway, was also up-regulated, resulting in an increase in squalene production compared with the confrontation with B. cinerea B05.10. Botcs had an up-regulatory effect on the tri biosynthetic genes, with BotcA having a stronger effect than BotcB. The results indicate that the interaction between Ta37 and B. cinerea exerts a stimulatory effect on the expression of the tri biosynthetic genes, which, in the interaction zone, can be attenuated by BOT produced by B. cinerea B05.10. The present work provides evidence for a metabolic dialogue between T. arundinaceum and B. cinerea that is mediated by sesquiterpenes and polyketides, and that affects the outcome of the interaction of these fungi with each other and their environmentSIFunding was obtained from the Junta de Castilla y Leon (SA260A11-2,LE125A12-2 and LE228U14) and Spanish Government grants MICINN-AGL2009-13431-C02-02, MINECO-AGL2012-40041-C02-01, AGL2012-40041-C02-02 and AGL2012-39798-C02-01. MGM and II-B were granted fellowships from the Spanish Ministry of Science and Innovation(AP2007-02835, BES-2013-063411

    Knowledge management in distributed software development: a systematic review

    Get PDF
    Software development is characterized as a knowledge intensive activity. Particularly, Distributed Software Development (DSD) is an approach that demands more attention for coordination and communication among members of distributed team, due to regional, cultural and infrastructure differences. Knowledge has being, increasingly, seen as the most important strategic resource in organizations. So, the management of this knowledge is critical to organizational success. Knowledge Management (KM) is a set of processes directed at creating, capturing, storing, sharing, apply, and reuse of knowledge, which are useful to decision making. The purpose of this paper is to present a systematic review carried out to identify the processes, techniques, methods, practices and/or tools adopted for Knowledge Management in Distributed Software Development. With this systematic review some interesting points for research were identified.WIS - X Workshop ingeniería de softwareRed de Universidades con Carreras en Informática (RedUNCI

    Fungal volatile organic compounds: emphasis on their plant growth-promoting

    Get PDF
    Fungal volatile organic compounds (VOCs) commonly formed bioactive interface between plants and countless of microorganisms on the above- and below-ground plant-fungus interactions. Fungal-plant interactions symbolize intriguingly biochemical complex and challenging scenarios that are discovered by metabolomic approaches. Remarkably secondary metabolites (SMs) played a significant role in the virulence and existence with plant-fungal pathogen interaction; only 25% of the fungal gene clusters have been functionally identified, even though these numbers are too low as compared with plant secondary metabolites. The current insights on fungal VOCs are conducted under lab environments and to apply small numbers of microbes; its molecules have significant effects on growth, development, and defense system of plants. Many fungal VOCs supported dynamic processes, leading to countless interactions between plants, antagonists, and mutualistic symbionts. The fundamental role of fungal VOCs at field level is required for better understanding, so more studies will offer further constructive scientific evidences that can show the cost-effectiveness of ecofriendly and ecologically produced fungal VOCs for crop welfare

    Indole is an essential herbivore-induced volatile priming signal in maize

    Get PDF
    Herbivore-induced volatile organic compounds prime non-attacked plant tissues to respond more strongly to subsequent attacks. However, the key volatiles that trigger this primed state remain largely unidentified. In maize, the release of the aromatic compound indole is herbivore-specific and occurs earlier than other induced responses. We therefore hypothesized that indole may be involved in airborne priming. Using indole-deficient mutants and synthetic indole dispensers, we show that herbivore-induced indole enhances the induction of defensive volatiles in neighbouring maize plants in a species-specific manner. Furthermore, the release of indole is essential for priming of mono- and homoterpenes in systemic leaves of attacked plants. Indole exposure markedly increases the herbivore-induced production of the stress hormones jasmonate-isoleucine conjugate and abscisic acid, which represents a likely mechanism for indole-dependent priming. These results demonstrate that indole functions as a rapid and potent aerial priming agent that prepares systemic tissues and neighbouring plants for incoming attacks
    corecore