9,774 research outputs found
Advanced optimal extraction for the Spitzer/IRS
We present new advances in the spectral extraction of point-like sources
adapted to the Infrared Spectrograph onboard the Spitzer Space Telescope. For
the first time, we created a super-sampled point spread function of the
low-resolution modules. We describe how to use the point spread function to
perform optimal extraction of a single source and of multiple sources within
the slit. We also examine the case of the optimal extraction of one or several
sources with a complex background. The new algorithms are gathered in a plugin
called Adopt which is part of the SMART data analysis software.Comment: Accepted for publication in PAS
Generalized W-Class State and its Monogamy Relation
We generalize the W class of states from qubits to qudits and prove
that their entanglement is fully characterized by their partial entanglements
even for the case of the mixture that consists of a W-class state and a product
state .Comment: 12 pages, 1 figur
Bounds on general entropy measures
We show how to determine the maximum and minimum possible values of one
measure of entropy for a given value of another measure of entropy. These
maximum and minimum values are obtained for two standard forms of probability
distribution (or quantum state) independent of the entropy measures, provided
the entropy measures satisfy a concavity/convexity relation. These results may
be applied to entropies for classical probability distributions, entropies of
mixed quantum states and measures of entanglement for pure states.Comment: 13 pages, 3 figures, published versio
Quantum informatics with plasmonic metamaterials
Surface polaritons at a meta-material interface are proposed as qubits. The
SP fields are shown to have low losses, subwavelength confinement and can
demonstrate very small modal volume. These important properties are used to
demonstatre interesting applications in quantum information, i.e., coherent
control of weak fields and large Kerr nonlinearity at the low photon level
An integrated genomic analysis of lung cancer reveals loss of DUSP4 in EGFR-mutant tumors.
To address the biological heterogeneity of lung cancer, we studied 199 lung adenocarcinomas by integrating genome-wide data on copy number alterations and gene expression with full annotation for major known somatic mutations in this cancer. This showed non-random patterns of copy number alterations significantly linked to EGFR and KRAS mutation status and to distinct clinical outcomes, and led to the discovery of a striking association of EGFR mutations with underexpression of DUSP4, a gene within a broad region of frequent single-copy loss on 8p. DUSP4 is involved in negative feedback control of EGFR signaling, and we provide functional validation for its role as a growth suppressor in EGFR-mutant lung adenocarcinoma. DUSP4 loss also associates with p16/CDKN2A deletion and defines a distinct clinical subset of lung cancer patients. Another novel observation is that of a reciprocal relationship between EGFR and LKB1 mutations. These results highlight the power of integrated genomics to identify candidate driver genes within recurrent broad regions of copy number alteration and to delineate distinct oncogenetic pathways in genetically complex common epithelial cancers
A strained silicon cold electron bolometer using Schottky contacts
We describe optical characterisation of a strained silicon cold electron bolometer (CEB), operating on a 350 mK stage, designed for absorption of millimetre-wave radiation. The silicon cold electron bolometer utilises Schottky contacts between a superconductor and an n++ doped silicon island to detect changes in the temperature of the charge carriers in the silicon, due to variations in absorbed radiation. By using strained silicon as the absorber, we decrease the electron-phonon coupling in the device and increase the responsivity to incoming power. The strained silicon absorber is coupled to a planar aluminium twin-slot antenna designed to couple to 160 GHz and that serves as the superconducting contacts. From the measured optical responsivity and spectral response, we calculate a maximum optical efficiency of 50% for radiation coupled into the device by the planar antenna and an overall noise equivalent power, referred to absorbed optical power, of 1.1×10−16 W Hz−1/2 when the detector is observing a 300 K source through a 4 K throughput limiting aperture. Even though this optical system is not optimized, we measure a system noise equivalent temperature difference of 6 mK Hz−1/2. We measure the noise of the device using a cross-correlation of time stream data, measured simultaneously with two junction field-effect transistor amplifiers, with a base correlated noise level of 300 pV Hz−1/2 and find that the total noise is consistent with a combination of photon noise, current shot noise, and electron-phonon thermal noise
Decorin protein core affects the global gene expression profile of the tumor microenvironment in a triple-negative orthotopic breast carcinoma xenograft model
Decorin, a member of the small leucine-rich proteoglycan gene family, exists and functions wholly within the tumor microenvironment to suppress tumorigenesis by directly targeting and antagonizing multiple receptor tyrosine kinases, such as the EGFR and Met. This leads to potent and sustained signal attenuation, growth arrest, and angiostasis. We thus sought to evaluate the tumoricidal benefits of systemic decorin on a triple-negative orthotopic breast carcinoma xenograft model. To this end, we employed a novel high-density mixed expression array capable of differentiating and simultaneously measuring gene signatures of both Mus musculus (stromal) and Homo sapiens (epithelial) tissue origins. We found that decorin protein core modulated the differential expression of 374 genes within the stromal compartment of the tumor xenograft. Further, our top gene ontology classes strongly suggests an unexpected and preferential role for decorin protein core to inhibit genes necessary for immunomodulatory responses while simultaneously inducing expression of those possessing cellular adhesion and tumor suppressive gene properties. Rigorous verification of the top scoring candidates led to the discovery of three genes heretofore unlinked to malignant breast cancer that were reproducibly found to be induced in several models of tumor stroma. Collectively, our data provide highly novel and unexpected stromal gene signatures as a direct function of systemic administration of decorin protein core and reveals a fundamental basis of action for decorin to modulate the tumor stroma as a biological mechanism for the ascribed anti-tumorigenic properties
Supersymmetry on Jacobstahl lattices
It is shown that the construction of Yang and Fendley (2004 {\it J. Phys. A:
Math.Gen. {\bf 37}} 8937) to obtainsupersymmetric systems, leads not to the
open XXZ chain with anisotropy but to systems having
dimensions given by Jacobstahl sequences.For each system the ground state is
unique. The continuum limit of the spectra of the Jacobstahl systems coincide,
up to degeneracies, with that of the invariant XXZ chain for
. The relation between the Jacobstahl systems and the open XXZ
chain is explained.Comment: 6 pages, 0 figure
Observation of the Halo of NGC 3077 Near the "Garland" Region Using the Hubble Space Telescope
We report the detection of upper main sequence stars and red giant branch
stars in the halo of an amorphous galaxy, NGC3077. The observations were made
using Wide Field Planetary Camera~2 on board the Hubble Space Telescope. The
red giant branch luminosity function in I-band shows a sudden discontinuity at
I = 24.0 +- 0.1 mag. Identifying this with the tip of the red giant branch
(TRGB), and adopting the calibration provided by Lee, Freedman, & Madore (1993)
and the foreground extinction of A_B = 0.21 mag, we obtain a distance modulus
of (m-M)_0 = 27.93 +- 0.14(random) +- 0.16(sys). This value agrees well with
the distance estimates of four other galaxies in the M81 Group. In addition to
the RGB stars, we observe a concentration of upper main sequence stars in the
halo of NGC3077, which coincides partially with a feature known as the
``Garland''. Using Padua isochrones, these stars are estimated to be <150 Myrs
old. Assuming that the nearest encounter between NGC3077 and M81 occurred 280
Myrs ago as predicted by the numerical simulations (Yun 1997), the observed
upper main sequence stars are likely the results of the star formation
triggered by the M81-NGC3077 tidal interaction.Comment: 15 pages, 8 figures. Accepted for publication in Astrophysical
Journa
- …