93 research outputs found

    Glassforming Liquids, Amorphous and Semicrystalline Polymers: Exploring their Energy Landscape and Dynamical Heterogeneity by Multi-frequency High-Field EPR

    Get PDF
    We review past and recent work carried out on viscous liquids, amorphous and semicrystalline polymers by multifrequency high-field electron paramagnetic resonance (HF-EPR) facility in Pisa. The emphasis is on the enhanced ability to provide fine details of the reorientation process of the paramagnetic guest, the spin probe, revealing features driving the dynamics of the host system, including the energy-barrier distribution of glassy polymers, the dynamical heterogeneity of semicrystalline polymers, and the dynamical changes occurring at the critical temperature predicted by the ideal mode-coupling theory

    Glassforming Liquids, Amorphous and Semicrystalline Polymers: Exploring their Energy Landscape and Dynamical Heterogeneity by Multi-frequency High-Field EPR

    Get PDF
    AbstractWe review past and recent work carried out on viscous liquids, amorphous and semicrystalline polymers by multifrequency high-field electron paramagnetic resonance (HF-EPR) facility in Pisa. The emphasis is on the enhanced ability to provide fine details of the reorientation process of the paramagnetic guest, the spin probe, revealing features driving the dynamics of the host system, including the energy-barrier distribution of glassy polymers, the dynamical heterogeneity of semicrystalline polymers, and the dynamical changes occurring at the critical temperature predicted by the ideal mode-coupling theory

    A study of the deep structure of the energy landscape of glassy polystyrene: the exponential distribution of the energy-barriers revealed by high-field Electron Spin Resonance spectroscopy

    Full text link
    The reorientation of one small paramagnetic molecule (spin probe) in glassy polystyrene (PS) is studied by high-field Electron Spin Resonance spectroscopy at two different Larmor frequencies (190 and 285 GHz). The exponential distribution of the energy-barriers for the rotational motion of the spin probe is unambigously evidenced at both 240K and 270K. The same shape for the distribution of the energy-barriers of PS was evidenced by the master curves provided by previous mechanical and light scattering studies. The breadth of the energy-barriers distribution of the spin probe is in the range of the estimates of the breadth of the PS energy-barriers distribution. The evidence that the deep structure of the energy landscape of PS exhibits the exponential shape of the energy-barriers distribution agrees with results from extreme-value statistics and the trap model by Bouchaud and coworkers.Comment: Final version in press as Letter to the Editor on J.Phys.:Condensed Matter. Changes in bol

    The role of CD8+ T cell clones in immune thrombocytopenia

    Get PDF
    Immune thrombocytopenia (ITP) is traditionally considered an antibody-mediated disease. However, a number of features suggest alternative mechanisms of platelet destruction. In this study, we use a multi-dimensional approach to explore the role of cytotoxic CD8+ T cells in ITP. We characterised patients with ITP and compared them to age-matched controls using immunophenotyping, next-generation sequencing of T cell receptor (TCR) genes, single-cell RNA sequencing, and functional T cell and platelet assays. We found that adults with chronic ITP have increased polyfunctional, terminally differentiated effector memory CD8+ T cells (CD45RA+CD62L-) expressing intracellular interferon-g, tumour necrosis factor-a, and Granzyme B defining them as TEMRA cells. These TEMRA cells expand when the platelet count falls and show no evidence of physiological exhaustion. Deep sequencing of the T cell receptor showed expanded T cell clones in patients with ITP. T cell clones persisted over many years, were more prominent in patients with refractory disease, and expanded when the platelet count was low. Combined single-cell RNA and TCR sequencing of CD8+ T cells confirmed that the expanded clones are TEMRA cells. Using in vitro model systems, we show that CD8+ T cells from patients with ITP form aggregates with autologous platelets, release interferon-g and trigger platelet activation and apoptosis through TCR-mediated release of cytotoxic granules. These findings of clonally expanded CD8+ T cells causing platelet activation and apoptosis provide an antibody-independent mechanism of platelet destruction, indicating that targeting specific T-cell clones could be a novel therapeutic approach for patients with refractory ITP

    Lectures on Gaussian approximations with Malliavin calculus

    Get PDF
    In a seminal paper of 2005, Nualart and Peccati discovered a surprising central limit theorem (called the "Fourth Moment Theorem" in the sequel) for sequences of multiple stochastic integrals of a fixed order: in this context, convergence in distribution to the standard normal law is equivalent to convergence of just the fourth moment. Shortly afterwards, Peccati and Tudor gave a multidimensional version of this characterization. Since the publication of these two beautiful papers, many improvements and developments on this theme have been considered. Among them is the work by Nualart and Ortiz-Latorre, giving a new proof only based on Malliavin calculus and the use of integration by parts on Wiener space. A second step is my joint paper "Stein's method on Wiener chaos" (written in collaboration with Peccati) in which, by bringing together Stein's method with Malliavin calculus, we have been able (among other things) to associate quantitative bounds to the Fourth Moment Theorem. It turns out that Stein's method and Malliavin calculus fit together admirably well. Their interaction has led to some remarkable new results involving central and non-central limit theorems for functionals of infinite-dimensional Gaussian fields. The current survey aims to introduce the main features of this recent theory. It originates from a series of lectures I delivered at the Coll\`ege de France between January and March 2012, within the framework of the annual prize of the Fondation des Sciences Math\'ematiques de Paris. It may be seen as a teaser for the book "Normal Approximations Using Malliavin Calculus: from Stein's Method to Universality" (jointly written with Peccati), in which the interested reader will find much more than in this short survey.Comment: 72 pages. To be published in the S\'eminaire de Probabilit\'es. Mild update: typos, referee comment

    Skin sensitization in silico protocol

    Get PDF
    The assessment of skin sensitization has evolved over the past few years to include in vitro assessments of key events along the adverse outcome pathway and opportunistically capitalize on the strengths of in silico methods to support a weight of evidence assessment without conducting a test in animals. While in silico methods vary greatly in their purpose and format; there is a need to standardize the underlying principles on which such models are developed and to make transparent the implications for the uncertainty in the overall assessment. In this contribution, the relationship of skin sensitization relevant effects, mechanisms, and endpoints are built into a hazard assessment framework. Based on the relevance of the mechanisms and effects as well as the strengths and limitations of the experimental systems used to identify them, rules and principles are defined for deriving skin sensitization in silico assessments. Further, the assignments of reliability and confidence scores that reflect the overall strength of the assessment are discussed. This skin sensitization protocol supports the implementation and acceptance of in silico approaches for the prediction of skin sensitization
    • …
    corecore