827 research outputs found

    Optical and geometrical characteristics of cirrus clouds over a Southern European lidar station

    Get PDF
    Optical and geometrical characteristics of cirrus clouds over Thessaloniki, Greece (40.6° N, 22.9° E) have been determined from the analysis of lidar and radiosonde measurements performed during the period from 2000 to 2006. Cirrus clouds are generally observed in a mid-altitude region ranging from 8.6 to 13 km, with mid-cloud temperatures in the range from −65° to −38°C. The cloud thickness generally ranges from 1 to 5 km and 38{%} of the cases studied have thickness between 2 and 3 km. The retrieval of optical depth and lidar ratio of cirrus clouds is performed using three different methods, taking into account multiple scattering effect. The mean optical depth is found to be 0.31±0.24 and the corresponding mean lidar ratio is 30±17 sr following the scheme of Klett-Fernald method. Sub-visual, thin and opaque cirrus clouds are observed at 3%, 57% and 40% of the measured cases, respectively. A comparison of the results obtained between the three methods shows good agreement. The multiple scattering errors of the measured effective extinction coefficients range from 20 to 60%, depending on cloud optical depth. The temperature and thickness dependencies on optical properties have also been studied in detail. A maximum mid-cloud depth of ~3.5 km is found at temperatures around ~−47.5°C, while there is an indication that optical depth and mean extinction coefficient increases with increasing mid-cloud temperature. A correlation between optical depth and thickness was also found. However, no clear dependence of the lidar ratio values on the cloud temperature and thickness was found

    Optical properties of different aerosol types: seven years of combined Raman-elastic backscatter lidar measurements in Thessaloniki, Greece

    Get PDF
    We present our combined Raman/elastic backscatter lidar observations which were carried out at the EARLINET station of Thessaloniki, Greece, during the period 2001–2007. The largest optical depths are observed for Saharan dust and smoke aerosol particles. For local and continental polluted aerosols the measurements indicate high aerosol loads. However, measurements associated with the local path indicate enhanced aerosol load within the Planetary Boundary Layer. The lowest value of aerosol optical depth is observed for continental aerosols, from West directions with less free tropospheric contribution. The largest lidar ratios, of the order of 70 sr, are found for biomass burning aerosols. A significant and distinct correlation between lidar ratio and backscatter related Ångström exponent values were estimated for different aerosol categories. Scatter plot between lidar ratio values and Ångström exponent values for local and continental polluted aerosols does not show a significant correlation, with a large variation in both parameters possibly due to variable absorption characteristics of these aerosols. Finally for continental aerosols with west and northwest directions that follow downward movement when arriving at our site constantly low lidar ratios almost independent of size are found

    Optical and geometrical characteristics of cirrus clouds over a mid-latitude lidar station

    No full text
    International audienceOptical and geometrical characteristics of cirrus clouds over Thessaloniki, Greece (40.6°, 22.9°) have been determined from the analysis of lidar and radiosonde measurements performed during the period from 2000 to 2006. Cirrus clouds are generally observed in a mid altitude region ranging from 7 to 12 km, with mid-cloud temperatures in the range from ?65° to ?25°C. A seasonality of cirrus geometrical and temperature properties is found. The cloud thickness ranges from 0.85 to 5 km and 37% of our cases have thickness between 2 and 3 km. The retrieval of cloud's optical depth and lidar ratio is performed using three different methods, taking into account multiple scattering effects. The mean optical depth is found to be 0.3±0.24 and the corresponding mean lidar ratio is 28±17 sr. Sub-visual, thin and opaque cirrus clouds are observed at 7.5%, 51% and 42.5% of the measured cases respectively. The multiple scattering errors of the measured effective extinction coefficients range from 20% to 60% depending on cloud optical depth. A comparison of the results between the three methods shows good agreement. In addition we present the advantages and limitations of each method applied. The temperature and thickness dependencies on optical properties have also been studied in detail. A maximum mid-cloud depth of ~3 km is found at temperatures around ~?45°C while there is an indication that optical depth increases with increasing thickness and mid-cloud temperature. No clear dependence of the lidar ratio values on the cloud temperature and thickness was found

    Lidar observations of the Planetary Boundary Layer above the city of Thessaloniki, Greece

    Get PDF
    Aerosol measurements have been performed in Greece since 1994, using a backscattering lidar system. The main scientific objective has been to evaluate the vertical structure of the Planetary Boundary Layer (PBL) in urban sites of Greece, using suspended aerosols as tracers of the atmospheric motion. The observations presented here were performed in early 1996, over the city of Thessaloniki in Northern Greece, close to the sea shore. The lidar system was operated under varying air pollution and meteorological conditions. The vertical profiles of the aerosol extinction and backscattering coefficients were retrieved from the lidar signal, using the Fernald-Klett inversion algorithm. Comparison between standard meteorological data from radiosondes and ground stations proves that lidar aerosol profiles can be successfully used to monitor the time variation in the layering of the lower troposphere

    Atmospheric effects of volcanic eruptions as seen by famous artists and depicted in their paintings

    No full text
    International audiencePaintings created by famous artists, representing sunsets throughout the period 1500?1900, provide proxy information on the aerosol optical depth following major volcanic eruptions. This is supported by a statistically significant correlation coefficient (0.8) between the measured red-to-green ratios of a few hundred paintings and the dust veil index. A radiative transfer model was used to compile an independent time series of aerosol optical depth at 550 nm corresponding to Northern Hemisphere middle latitudes during the period 1500?1900. The estimated aerosol optical depths range from 0.05 for background aerosol conditions, to about 0.6 following the Tambora and Krakatau eruptions and cover a period practically outside of the instrumentation era

    Validation of CALIPSO space-borne-derived attenuated backscatter coefficient profiles using a ground-based lidar in Athens, Greece

    Get PDF
    We present initial aerosol validation results of the space-borne lidar CALIOP -onboard the CALIPSO satellite- Level 1 attenuated backscatter coefficient profiles, using coincident observations performed with a ground-based lidar in Athens, Greece (37.9° N, 23.6° E). A multi-wavelength ground-based backscatter/Raman lidar system is operating since 2000 at the National Technical University of Athens (NTUA) in the framework of the European Aerosol Research LIdar NETwork (EARLINET), the first lidar network for tropospheric aerosol studies on a continental scale. Since July 2006, a total of 40 coincidental aerosol ground-based lidar measurements were performed over Athens during CALIPSO overpasses. The ground-based measurements were performed each time CALIPSO overpasses the station location within a maximum distance of 100 km. The duration of the ground–based lidar measurements was approximately two hours, centred on the satellite overpass time. From the analysis of the ground-based/satellite correlative lidar measurements, a mean bias of the order of 22% for daytime measurements and of 8% for nighttime measurements with respect to the CALIPSO profiles was found for altitudes between 3 and 10 km. The mean bias becomes much larger for altitudes lower that 3 km (of the order of 60%) which is attributed to the increase of aerosol horizontal inhomogeneity within the Planetary Boundary Layer, resulting to the observation of possibly different air masses by the two instruments. In cases of aerosol layers underlying Cirrus clouds, comparison results for aerosol tropospheric profiles become worse. This is attributed to the significant multiple scattering effects in Cirrus clouds experienced by CALIPSO which result in an attenuation which is less than that measured by the ground-based lidar

    Study of the effect of different type of aerosols on UV-B radiation from measurements during EARLINET

    No full text
    International audienceRoutine lidar measurements of the vertical distribution of the aerosol extinction coefficient and the extinction-to-backscatter ratio have been performed at Thessaloniki, Greece using a Raman lidar system in the frame of the EARLINET project since 2000. Spectral and broadband UV-B irradiance measurements, as well as total ozone observations, were available whenever lidar measurements were obtained. From the available measurements several cases could be identified that allowed the study of the effect of different types of aerosol on the levels of the UV-B solar irradiance at the Earth's surface. The TUV radiative transfer model has been used to simulate the irradiance measurements, using total ozone and the lidar aerosol data as input. From the comparison of the model results with the measured spectra the effective single scattering albedo was determined using an iterative procedure, which has been verified against results from the 1998 Lindenberg Aerosol Characterization Experiment. It is shown that the same aerosol optical depth and same total ozone values can show differences up to 10% in the UV-B irradiance at the Earth's surface, which can be attributed to differences in the aerosol type. It is shown that the combined use of the estimated single scattering albedo and the measured extinction-to-backscatter ratio leads to a better characterization of the aerosol type probed

    Sampling of an STT event over the Eastern Mediterranean region by lidar and electrochemical sonde

    Get PDF
    International audienceA two-wavelength ultraviolet (289?316nm) ozone Differential Absorption Lidar (DIAL) system is used to perform ozone measurements in the free troposphere in the Eastern Mediterranean (Northern Greece). The ozone DIAL profiles obtained during a Stratosphere-to-Troposphere Transport (STT) event are compared to that acquired by an electrochemical ozonesonde, in the altitude range between 2 and 10 km. The measurement accuracy of these two instruments is also discussed. The mean difference between the ozone profiles obtained by the two techniques is of the order of 1.11 ppbv (1.86%), while the corresponding standard deviation is 4.69 ppbv (8.16%). A case study of an STT event which occurred on 29 November 2000 is presented and analyzed, using ozone lidar, satellite and meteorological data, as well as air mass back-trajectory analysis. During this STT event ozone mixing ratios of 55?65 ppbv were observed between 5 and 7 km height above sea level (a.s.l.). Stratospheric air was mixed with tropospheric air masses, leading to potential vorticity (PV) losses due to diabatic processes. The ozone DIAL system can be used for following STT events and small-scale mixing phenomena in the free troposphere, and for providing sequences of vertical ozone profiles in the free troposphere. Keywords. Atmospheric composition and structure (Evolution of the atmosphere; Instruments and techniques) ? Meteorology and atmospheric dynamics (Middle atmosphere dynamics; Turbulence

    Study of the effect of different type of aerosols on UV-B radiation from measurements during EARLINET

    Get PDF
    Routine lidar measurements of the vertical distribution of the aerosol extinction coefficient and the extinction-to-backscatter ratio have been performed at Thessaloniki, Greece using a Raman lidar system in the frame of the EARLINET project since 2000. Co-located spectral and broadband solar UV-B irradiance measurements, as well as total ozone observations, were available whenever lidar measurements were obtained. From the available measurements several cases could be identified that allowed the study of the effect of different types of aerosol on the levels of the UV-B solar irradiance at the Earth's surface. The TUV radiative transfer model has been used to simulate the irradiance measurements, using total ozone and the lidar aerosol data as input. From the comparison of the model results with the measured spectra the effective single scattering albedo was determined using an iterative procedure, which has been verified against results from the 1998 Lindenberg Aerosol Characterization Experiment. It is shown that for the same aerosol optical depth and for the same total ozone values the UV-B irradiances at the Earth's surface can show differences up to 10%, which can be attributed to differences in the aerosol type. It is shown that the combined use of the estimated single scattering albedo and of the measured extinction-to-backscatter ratio leads to a better characterization of the aerosol type probed
    corecore