53,951 research outputs found

    Vestibular-induced vomiting after vestibulocerebellar lesions

    Get PDF
    Vestibular stimulation, by sinusoidal electrical polarization of the labyrinths of decerebrate cats which can produce vomiting and related activity which resembles motion sickness was examined. The symptoms include panting, salivation, swallowing, and retching as well as vomiting. These symptoms can be produced in cats with lesions of the posterior cerebellar vermis. It is suggested that a transcerebellar pathway from the vestibular apparatus through the nodulus and uvula to the vomiting center is not essential for vestibular induced vomiting and the occurrence of many symptoms of motion

    Vomiting Center reanalyzed: An electrical stimulation study

    Get PDF
    Electrical stimulation of the brainstem of 15 decerebrate cats produced stimulus-bound vomiting in only 4 animals. Vomiting was reproducible in only one cat. Effective stimulating sites were located in the solitary tract and reticular formation. Restricted localization of a vomiting center, stimulation of which evoked readily reproducible results, could not be obtained

    Induced scattering of short radio pulses

    Full text link
    Effect of the induced Compton and Raman scattering on short, bright radio pulses is investigated. It is shown that when a single pulse propagates through the scattering medium, the effective optical depth is determined by the duration of the pulse but not by the scale of the medium. The induced scattering could hinder propagation of the radio pulse only if close enough to the source a dense enough plasma is presented. The induced scattering within the relativistically moving source places lower limits on the Lorentz factor of the source. The results are applied to the recently discovered short extragalactic radio pulse.Comment: submitted to Ap

    Tunable Holstein model with cold polar molecules

    Full text link
    We show that an ensemble of polar molecules trapped in an optical lattice can be considered as a controllable open quantum system. The coupling between collective rotational excitations and the motion of the molecules in the lattice potential can be controlled by varying the strength and orientation of an external DC electric field as well as the intensity of the trapping laser. The system can be described by a generalized Holstein Hamiltonian with tunable parameters and can be used as a quantum simulator of excitation energy transfer and polaron phenomena. We show that the character of excitation energy transfer can be modified by tuning experimental parameters.Comment: 5 pages, 3 figures (accepted in as a Rapid Communication in Phys.Rev.A

    Narrowband Biphoton Generation due to Long-Lived Coherent Population Oscillations

    Full text link
    We study the generation of paired photons due to the effect of four-wave mixing in an ensemble of pumped two-level systems that decay via an intermediate metastable state. The slow population relaxation of the metastable state to the ground state is utilized to create long-lived coherent population oscillation, leading to narrowband nonlinear response of the medium. The biphotons have a narrow bandwidth, long coherence time and length, which can be controlled by the pump field. In addition, the biphotons are antibunched, with antibunching period determined by the dephasing time. During this period, damped oscillations of the biphoton wavefunction occurs if the pump detuning is non-zero.Comment: 7 pages, 2 figure

    Measurement and control of a mechanical oscillator at its thermal decoherence rate

    Full text link
    In real-time quantum feedback protocols, the record of a continuous measurement is used to stabilize a desired quantum state. Recent years have seen highly successful applications in a variety of well-isolated micro-systems, including microwave photons and superconducting qubits. By contrast, the ability to stabilize the quantum state of a tangibly massive object, such as a nanomechanical oscillator, remains a difficult challenge: The main obstacle is environmental decoherence, which places stringent requirements on the timescale in which the state must be measured. Here we describe a position sensor that is capable of resolving the zero-point motion of a solid-state, nanomechanical oscillator in the timescale of its thermal decoherence, a critical requirement for preparing its ground state using feedback. The sensor is based on cavity optomechanical coupling, and realizes a measurement of the oscillator's displacement with an imprecision 40 dB below that at the standard quantum limit, while maintaining an imprecision-back-action product within a factor of 5 of the Heisenberg uncertainty limit. Using the measurement as an error signal and radiation pressure as an actuator, we demonstrate active feedback cooling (cold-damping) of the 4.3 MHz oscillator from a cryogenic bath temperature of 4.4 K to an effective value of 1.1±\pm0.1 mK, corresponding to a mean phonon number of 5.3±\pm0.6 (i.e., a ground state probability of 16%). Our results set a new benchmark for the performance of a linear position sensor, and signal the emergence of engineered mechanical oscillators as practical subjects for measurement-based quantum control.Comment: 24 pages, 10 figures; typos corrected in main text and figure

    Design comparison of cesium and potassium vapor turbine-generator units for space power

    Get PDF
    Design comparison of cesium and potassium vapor turbogenerator units for space power plant

    The normalization of sibling violence: Does gender and personal experience of violence influence perceptions of physical assault against siblings?

    Get PDF
    Despite its pervasive and detrimental nature, sibling violence (SV) remains marginalized as a harmless and inconsequential form of familial aggression. The present study investigates the extent to which perceptions of SV differ from those of other types of interpersonal violence. A total of 605 respondents (197 males, 408 females) read one of four hypothetical physical assault scenarios that varied according to perpetrator–victim relationship type (i.e., sibling vs. dating partner vs. peer vs. stranger) before completing a series of 24 attribution items. Respondents also reported on their own experiences of interpersonal violence during childhood. Exploratory factor analysis reduced 23 attribution items to three internally reliable factors reflecting perceived assault severity, victim culpability, and victim resistance ratings. A 4 × 2 MANCOVA—controlling for respondent age—revealed several significant effects. Overall, males deemed the assault less severe and the victim more culpable than did females. In addition, the sibling assault was deemed less severe compared to assault on either a dating partner or a stranger, with the victim of SV rated just as culpable as the victim of dating, peer, or stranger-perpetrated violence. Finally, respondents with more (frequent) experiences of childhood SV victimization perceived the hypothetical SV assault as being less severe, and victim more culpable, than respondents with no SV victimization. Results are discussed in the context of SV normalization. Methodological limitations and applications for current findings are also outlined
    • …
    corecore