24 research outputs found

    Geochronology of the Holocene of the Belorussian Polessie

    No full text
    We distinguished major stages of the last glaciation (Bulling, Older Dryas, Allerod, Younger Dryas) and the Holocene by radiocarbon dating and paleobotanical analyses. Our paleobotanical investigation of peatlands is well correlated with independent 14C data. We establish that the Atlantic and Subboreal stages of the Holocene have three divisions, and that the Subatlantic has two.This material was digitized as part of a cooperative project between Radiocarbon and the University of Arizona Libraries.The Radiocarbon archives are made available by Radiocarbon and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform February 202

    Late Quaternary landscape evolution of the Tiber River delta plain (Central Italy): new evidence from pollen data, biostratigraphy and C-14 dating

    No full text
    New data from 45 sediment cores, 35 C-14 datings and numerous pollen analyses were considered for improving the understanding of the stratigraphy of the Tiber River delta plain. Bottom to top, the three recognized units pointed to the following environments: i) continental shelf with fairly noticeable siliciclastic input, ii) coastal plain with spread lagoons and sandy-gravelly beaches and, iii) a capping complex and mostly a paralic sediment suite which records the landscape evolution over the last 18 kyr. The study area, fully emerged until 13 kyr BP, is characterized by the deep and narrow valley incised by the Tiber River during the last glacial sea level low stand. Following its origin the valley underwent partial submersion by sea-water while Tiber River was building up a seaward retrograding bay-head delta. Beginning from 8 kyr BP this feature progradated and at 6 kyr BP changed into a wave-dominated delta which originated a strand plain with two coastal lakes. In Roman times, the most important harbour of the antiquity was built close to the Tiber River mouth. During the Renaissance, an enhanced progradation phase shaped a landscape akin to the present one, apart from some minor changes subsequent to the reclamation of coastal ponds and relic marshes in modern times. The results herein discussed confirm that the post-glacial sea level rise and the Tiber River solid discharge were the two antithetic mechanisms responsible for the landscape evolution of the deltaic area. However, during the last transgression even the antecedent topographhy played an important role, and since Neolithic times the effects of the anthropogenic impact were also noticeable

    Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns

    No full text
    Continental-scale estimates of vegetation cover, including land-surface properties and biogeographic trends, reflect the response of plant species to climate change over the past millennia. These estimates can help assess the effectiveness of simulations of climate change using forward and inverse modelling approaches. With the advent of transient and contiguous time-slice palaeoclimate simulations, vegetation datasets with similar temporal qualities are desirable. We collated fossil pollen records for the period 21,000–0 cal yr BP (kyr cal BP; calibrated ages) for Europe and Asia north of 40°N, using extant databases and new data; we filtered records for adequate dating and sorted the nomenclature to conform to a consistent yet extensive taxon list. From this database we extracted pollen spectra representing 1000-year time-slices from 21 kyr cal BP to present and used the biomization approach to define the most likely vegetation biome represented. Biomes were mapped for the 22 time slices, and key plant functional types (PFTs, the constituents of the biomes) were tracked though time. An error matrix and index of topographic complexity clearly showed that the accuracy of pollen-based biome assignments (when compared with modern vegetation) was negatively correlated with topographic complexity, but modern vegetation was nevertheless effectively mapped by the pollen, despite moderate levels of misclassification for most biomes. The pattern at 21 ka is of herb-dominated biomes across the whole region. From the onset of deglaciation (17–18 kyr cal BP), some sites in Europe record forest biomes, particularly the south, and the proportion of forest biomes gradually increases with time through 14 kyr cal BP. During the same period, forest biomes and steppe or tundra biomes are intermixed across the central Asian mountains, and forest biomes occur in coastal Pacific areas. These forest biome occurrences, plus a record of dated plant macrofossils, indicate that some tree populations existed in southern and Eastern Europe and central and far-eastern Eurasia. PFT composition of the herbaceous biomes emphasises the significant contribution of diverse forbs to treeless vegetation, a feature often obscured in pollen records. An increase in moisture ca. 14 kyr cal BP is suggested by a shift to woody biomes and an increase in sites recording initialization and development of lakes and peat deposits, particularly in the European portion of the region. Deforestation of Western Europe, presumably related to agricultural expansion, is clearly visible in the most recent two millennia

    Vegetation of Eurasia from the last glacial maximum to present: Key biogeographic patterns

    Get PDF
    Continental-scale estimates of vegetation cover, including land-surface properties and biogeographic trends, reflect the response of plant species to climate change over the past millennia. These estimates can help assess the effectiveness of simulations of climate change using forward and inverse modelling approaches. With the advent of transient and contiguous time-slice palaeoclimate simulations, vegetation datasets with similar temporal qualities are desirable. We collated fossil pollen records for the period 21,000–0 cal yr BP (kyr cal BP; calibrated ages) for Europe and Asia north of 40°N, using extant databases and new data; we filtered records for adequate dating and sorted the nomenclature to conform to a consistent yet extensive taxon list. From this database we extracted pollen spectra representing 1000-year time-slices from 21 kyr cal BP to present and used the biomization approach to define the most likely vegetation biome represented. Biomes were mapped for the 22 time slices, and key plant functional types (PFTs, the constituents of the biomes) were tracked though time. An error matrix and index of topographic complexity clearly showed that the accuracy of pollen-based biome assignments (when compared with modern vegetation) was negatively correlated with topographic complexity, but modern vegetation was nevertheless effectively mapped by the pollen, despite moderate levels of misclassification for most biomes. The pattern at 21 ka is of herb-dominated biomes across the whole region. From the onset of deglaciation (17–18 kyr cal BP), some sites in Europe record forest biomes, particularly the south, and the proportion of forest biomes gradually increases with time through 14 kyr cal BP. During the same period, forest biomes and steppe or tundra biomes are intermixed across the central Asian mountains, and forest biomes occur in coastal Pacific areas. These forest biome occurrences, plus a record of dated plant macrofossils, indicate that some tree populations existed in southern and Eastern Europe and central and far-eastern Eurasia. PFT composition of the herbaceous biomes emphasises the significant contribution of diverse forbs to treeless vegetation, a feature often obscured in pollen records. An increase in moisture ca. 14 kyr cal BP is suggested by a shift to woody biomes and an increase in sites recording initialization and development of lakes and peat deposits, particularly in the European portion of the region. Deforestation of Western Europe, presumably related to agricultural expansion, is clearly visible in the most recent two millennia

    Climate Variability and Associated Vegetation Response throughout Central and Eastern Europe (CEE) between 60 and 8 ka

    Get PDF
    Records of past climate variability and associated vegetation response exist in various regions throughout Central and Eastern Europe (CEE). To date, there has been no coherent synthesis of the existing palaeo-records. During an INTIMATE meeting (Cluj Napoca, Romania) focused on identifying CEE paleo-records, it was decided to address this gap by presenting the palaeo-community with a compilation of high-quality climatic and vegetation records for the past 60–8 ka. The compilation should also serve as a reference point for the use in the modelling community working towards the INTIMATE project goals, and in data-model inter-comparison studies. This paper is therefore a compilation of up to date, best available quantitative and semi-quantitative records of past climate and biotic response from CEE covering this period. It first presents the proxy and archive used. Speleothems and loess mainly provide the evidences available for the 60–20 ka interval, whereas pollen records provide the main source of information for the Lateglacial and Holocene. It then examines the temporal and spatial patterns of climate variability inferred from different proxies, the temporal and spatial magnitude of the vegetation responses inferred from pollen records and highlights differences and similarities between proxies and sub-regions and the possible mechanisms behind this variability. Finally, it identifies weakness in the proxies and archives and their geographical distribution. This exercise also provides an opportunity to reflect on the status of research in the area and to identify future critical areas and subjects of research
    corecore