3,708 research outputs found

    A fail-safe CMOS logic gate

    Get PDF
    This paper reports a design technique to make Complex CMOS Gates fail-safe for a class of faults. Two classes of faults are defined. The fail-safe design presented has limited fault-tolerance capability. Multiple faults are also covered

    Time-dependent photoionization of azulene: Competition between ionization and relaxation in highly excited states

    Get PDF
    Pump-probe photoionization has been used to map the relaxation processes taking place from highly vibrationally excited levels of the S2 state of azulene, populated directly or via internal conversion from the S4 state. Photoelectron spectra obtained by 1+2’ two-color time-resolved photoelectron imaging are invariant (apart from in intensity) to the pump-probe time delay and to pump wavelength. This reveals a photoionization process which is driven by an unstable electronic state (e.g. doubly excited state) lying below the ionization potential. This state is postulated to be populated by a probe transition from S2 and to rapidly relax via an Auger like process onto highly vibrationally excited Rydberg states. This accounts for the time invariance of the photoelectron spectrum. The intensity of the photoelectron spectrum is proportional to the population in S2. An exponential energy gap law is used to describe the internal conversion rate from S2 to S0. The vibronic coupling strength is found to be larger than 60±5 μeV

    Conserved cis-elements in the Xenopus red opsin promoter necessary for cone-specific expression

    Get PDF
    AbstractThe long-wavelength sensitive (red) opsin genes encode proteins which play a central role in daytime and color vision in vertebrates. We used transgenic Xenopus to identify 5′ cis-elements in the red cone opsin promoter necessary for cone-specific expression. We found a highly conserved extended region (−725 to −173) that was required for restricting GFP transgene expression to cones. We further identified a short element (5′-CCAATTAAGAGAT-3′) highly conserved amongst tetrapods, including humans, necessary to restrict expression to cones in the retina. These results identify novel conserved elements that regulate spatial expression of tetrapod red cone opsin genes

    Links between N-modular redundancy and the theory of error-correcting codes

    Get PDF
    N-Modular Redundancy (NMR) is one of the best known fault tolerance techniques. Replication of a module to achieve fault tolerance is in some ways analogous to the use of a repetition code where an information symbol is replicated as parity symbols in a codeword. Linear Error-Correcting Codes (ECC) use linear combinations of information symbols as parity symbols which are used to generate syndromes for error patterns. These observations indicate links between the theory of ECC and the use of hardware redundancy for fault tolerance. In this paper, we explore some of these links and show examples of NMR systems where identification of good and failed elements is accomplished in a manner similar to error correction using linear ECC's

    Unlocking Passion and Setting Students Free: The Impact of Culturally Relevant Writing Instruction in a Middle School English I Classroom

    Get PDF
    Culturally relevant writing instruction has the potential to validate the voices of students often not heard. Documented disparities in student writing proficiency in grades K-12 indicate a pressing need to employ more effective approaches in facilitating writing instruction. This paper presents the findings of a mixed methods research study that explored eighth grade English I students’ middle school reading and writing preferences, writing experiences, and the impact of culturally relevant writing instruction. Data were gathered from 63 students via reflective journals, writing interest forms, learning logs, and writing artifacts collected throughout a 3-week writing unit. Our findings reveal that writing instruction that leverages students’ interests, experiences, and cultural background has the potential to increase learning outcomes for students

    Characterization of three types of silicon solar cells for SEPS Deep Space Mission. Volume 3: Current-voltage characteristics of spectrolab sculptured BSR/P+ (K7), BSR/P+ (K6.5) and BSR (K4.5) cells as a function of temperature and intensity

    Get PDF
    Three types of high performance silicon solar cells, sculptured BSR/P+(K7), BSR/P+(K6.5) and BSR(K4.5) manufactured by Spectrolab were evaluated for their low temperature and low intensity performance. Sixteen cells of each type were subjected to 11 temperatures and 9 intensities. The sculptured BSR/P+(K7) cells provided the greatest maximum power output both at 1 AU and at LTLI conditions. The average efficiencies of this cell were 14.4 percent at 1 SC/+25 deg C and 18.5 percent at 0.086 SC/-100 deg C

    Fractional Quantum Hall Effect and vortex lattices

    Full text link
    It is demonstrated that all observed fractions at moderate Landau level fillings for the quantum Hall effect can be obtained without recourse to the phenomenological concept of composite fermions. The possibility to have the special topologically nontrivial many-electron wave functions is considered. Their group classification indicates the special values of of electron density in the ground states separated by a gap from excited states

    Asynchrony adaptation reveals neural population code for audio-visual timing

    Get PDF
    The relative timing of auditory and visual stimuli is a critical cue for determining whether sensory signals relate to a common source and for making inferences about causality. However, the way in which the brain represents temporal relationships remains poorly understood. Recent studies indicate that our perception of multisensory timing is flexible—adaptation to a regular inter-modal delay alters the point at which subsequent stimuli are judged to be simultaneous. Here, we measure the effect of audio-visual asynchrony adaptation on the perception of a wide range of sub-second temporal relationships. We find distinctive patterns of induced biases that are inconsistent with the previous explanations based on changes in perceptual latency. Instead, our results can be well accounted for by a neural population coding model in which: (i) relative audio-visual timing is represented by the distributed activity across a relatively small number of neurons tuned to different delays; (ii) the algorithm for reading out this population code is efficient, but subject to biases owing to under-sampling; and (iii) the effect of adaptation is to modify neuronal response gain. These results suggest that multisensory timing information is represented by a dedicated population code and that shifts in perceived simultaneity following asynchrony adaptation arise from analogous neural processes to well-known perceptual after-effects
    corecore