23 research outputs found

    Clinical study on Fournier's gangrene

    Get PDF
    BACKGROUND: Fournier’s gangrene is necrotizing fasciitis of the external genitalia and perineum. OBJECTIVE: To study the etiology, microbiology, reconstructive procedures and mortality associated with fournier’s gangrene. STUDY PLACE AND PERIOD: Coimbatore Medical College Hospital, September 2011 to November 2012. METHODOLOGY: 34 patients presented to the outpatient department and emergency department were included in the study. Information regarding etiology, microbiology, reconstructive procedures and mortality was studied. RESULTS: The disease most commonly originates from anorectal source (35.3%). Diabetes mellitus is the most commonly associated comorbid factor (38.2%). The disease is most commonly Polymicrobial (79.4%). The most commonly isolated organism is E coli (47%). Mean number of debridement performed is 2.9. Reconstructive procedure were performed in 50% of individuals and primary closure is the commonly performed surgery (38.2%). Mortality associated with the series is 11.8%. FGSI is a useful indicator in predicting mortality. CONCLUSIONS : Despite of recent advances the disease still carries significant mortality. Early resuscitation with aggressive debridement is required in most of the cases

    Caspase-2 is upregulated after sciatic nerve transection and its inhibition protects dorsal root ganglion neurons from Apoptosis after serum withdrawal

    Get PDF
    Sciatic nerve (SN) transection-induced apoptosis of dorsal root ganglion neurons (DRGN) is one factor determining the efficacy of peripheral axonal regeneration and the return of sensation. Here, we tested the hypothesis that caspase-2(CASP2) orchestrates apoptosis of axotomised DRGN both in vivo and in vitro by disrupting the local neurotrophic supply to DRGN. We observed significantly elevated levels of cleaved CASP2 (C-CASP2), compared to cleaved caspase-3 (C-CASP3), within TUNEL+DRGN and DRG glia (satellite and Schwann cells) after SN transection. A serum withdrawal cell culture model, which induced 40% apoptotic death in DRGN and 60% in glia, was used to model DRGN loss after neurotrophic factor withdrawal. Elevated C-CASP2 and TUNEL were observed in both DRGN and DRG glia, with C-CASP2 localisation shifting from the cytosol to the nucleus, a required step for induction of direct CASP2-mediated apoptosis. Furthermore, siRNAmediated downregulation of CASP2 protected 50% of DRGN from apoptosis after serum withdrawal, while downregulation of CASP3 had no effect on DRGN or DRG glia survival. We conclude that CASP2 orchestrates the death of SN-axotomised DRGN directly and also indirectly through loss of DRG glia and their local neurotrophic factor support. Accordingly, inhibiting CASP2 expression is a potential therapy for improving both the SN regeneration response and peripheral sensory recovery

    Alcohol-related brain damage in humans

    Get PDF
    Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics

    Detection, quantification, and microlocalisation of targets of pesticides using microchannel plate autoradiographic imagers

    Full text link
    Organophosphorus (OP) compounds are a diverse chemical group that includes nerve agents and pesticides. They share a common chemical signature that facilitates their binding and adduction of acetylcholinesterase (AChE) within nerve synapses to induce cholinergic toxicity. However, this group diversity results in non-uniform binding and inactivation of other secondary protein targets, some of which may be adducted and protein activity influenced, even when only a relatively minor portion of tissue AChE is inhibited. The determination of individual OP protein binding targets has been hampered by the sensitivity of methods of detection and quantification of protein-pesticide adducts. We have overcome this limitation by the employment of a microchannel plate (MCP) autoradiographic detector to monitor a radiolabelled OP tracer compound. We preincubated rat thymus tissue in vitro with the OP pesticides, azamethiphos-oxon, chlorfenvinphos-oxon, chlorpyrifos-oxon, diazinon-oxon, and malaoxon, and then subsequently radiolabelled the free OP binding sites remaining with [superscript 3]H-diisopropylfluorophosphate ([superscript 3]H-DFP). Proteins adducted by OP pesticides were detected as a reduction in [superscript 3]H-DFP radiolabelling after protein separation by one dimensional polyacrylamide gel electrophoresis and quantitative digital autoradiography using the MCP imager. Thymus tissue proteins of molecular weights ~28 kDa, 59 kDa, 66 kDa, and 82 kDa displayed responsiveness to adduction by this panel of pesticides. The 59 kDa protein target (previously putatively identified as carboxylesterase I) was only significantly adducted by chlorfenvinphos-oxon (p < 0.001), chlorpyrifos-oxon (p < 0.0001), and diazinon-oxon (p < 0.01), the 66 kDa protein target (previously identified as serum albumin) similarly only adducted by the same three pesticides (p < 0.0001), (p < 0.001), and (p < 0.01), and the 82 kDa protein target (previously identified as acyl peptide hydrolase) only adducted by chlorpyrifos-oxon (p < 0.0001) and diazinon-oxon (p < 0.001), when the average values of tissue AChE inhibition were 30%, 35%, and 32% respectively. The ~28 kDa protein target was shown to be heterogeneous in nature and was resolved to reveal nineteen [superscript 3]H-DFP radiolabelled protein spots by two dimensional polyacrylamide gel electrophoresis and MCP autoradiography. Some of these [superscript 3]H-DFP proteins spots were responsive to adduction by preincubation with chlorfenvinphos-oxon. In addition, we exploited the useful spatial resolution of the MCP imager (~70 µm) to determine pesticide micolocalisation in vivo, after animal dosing and autoradiography of brain tissue sections. Collectively, MCP autoradiographic imaging provided a means to detect targets of OP pesticides, quantify their sensitivity of adduction relative to tissue AChE inhibition, and highlighted that these common pesticides exhibit specific binding character to protein targets, and therefore their toxicity will need to be evaluated on an individual compound basis. In addition, MCP autoradiography afforded a useful method of visualisation of the localisation of a small radiolabelled tracer within brain tissue
    corecore