134 research outputs found
Robotic Intracorporeal Ileal Conduit Formation: Initial Experience from a Single UK Centre
Objectives. To describe our technique of robotic intracorporeal ileal conduit formation (RICIC) during robotic-assisted radical cystectomy (RARC). To report our initial results of this new procedure. Patients and Methods. Seven male and one female patients underwent RARC with RICIC over a six-month period. Demographic, operative, and outcome data was collected prospectively. Median patient age was 75 years (range 62–78 years). Median followup was 9 months (range 7–14 months). Results. RARC with RICIC was performed successfully in all eight patients. The median total operating time was 360 minutes (range 310–440 minutes) with a median blood loss of 225 mL (range 50–1000 mL). The median length of stay was nine days (range 6–34 days). Four patients (50%) were discharged within seven days. Four patients (50%) experienced one or more complications. This included two Clavien I complications, two Clavien II complications, and two Clavien III complications. Two patients (25%) required transfusion of two units each. To date, there have been no complications associated with the ileal conduit. Conclusion. Whilst being technically challenging, this procedure is safe, feasible, and reproducible. Patients who avoid complication show potential for rapid recovery and early discharge
Scrub typhus: A case report
Fever with rash is a common cause for dermatological referral. The
causes can range from viral to protozoal, bacterial or spirochaetal. A
case of rickettsial fever is reported
Quantum-chemical investigation of the structure and the antioxidant properties of α-lipoic acid and its metabolites
Quantum-chemical computations were used to investigate the structure–antioxidant parameter relationships of α-lipoic acid and its natural metabolites bisnorlipoic acid and tetranorlipoic acid in their oxidized and reduced forms. The enantiomers of lipoic and dihydrolipoic acid were optimized using the B3LYP/6-311+G(3df,2p), B3LYP/aug-cc-pVDZ and MP2(full)/6-31+G(d,p) levels of theory as isolated molecules and in the presence of water. The geometries of the metabolites and the values of their antioxidant parameters (proton affinity, bond dissociation enthalpy, adiabatic ionization potential, spin density, and the highest occupied molecular orbital energy) were calculated at the B3LYP/6-311+G(3df,2p) level of theory. The results obtained reveal similarities between these structures: a pentatomic, nonaromatic ring is present in the oxidized forms, while an unbranched aliphatic chain (as found in saturated fatty acids) is present in both the oxidized and the reduced forms. Analysis of the spin density and the highest occupied molecular orbital energy revealed that the SH groups exhibited the greatest electron-donating activities. The values obtained for the proton affinity, bond dissociation enthalpy and adiabatic ionization potential indicate that the preferred antioxidant mechanisms for α-lipoic acid and its metabolites are sequential proton loss electron transfer in polar media and hydrogen atom transfer in vacuum
Outcomes of the 2019 Novel Coronavirus in patients with or without a history of cancer - a multi-centre North London experience
© The Author(s) 2020. This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).Background Four months after the first known case of the 2019 novel coronavirus disease (COVID-19), on the 11th March 2020, the WHO declared the outbreak a pandemic and acknowledged the potential to overwhelm national healthcare systems. The high prevalence and associated healthcare, social and economic challenges of COVID-19 suggest this pandemic is likely to have a major impact on cancer management, and has been shown to potentially have worse outcomes in this cohort of vulnerable patients (1). This study aims to compare the outcomes of reverse transcriptase polymerase chain reaction (RT-PCR) confirmed COVID-19 positive disease in patients with or without a history of cancer. Method: We retrospectively collected clinical, pathological and radiological characteristics and outcomes of COVID-19 RT-PCR positive cancer patients treated consecutively in four different North London hospitals (cohort A). Outcomes recorded included morbidity, mortality and length of hospital stay. All clinically relevant outcomes were then compared to consecutively admitted COVID-19 positive patients, without a history of cancer (cohort B), treated at the primary centre during the same time period (12th March- 7th April 2020). Results: A total of 52 electronic patient records during the study time period were reviewed. Cohort A (median age 76 years, 56% males) and cohort B (median age 58 years, 62% male) comprised of 26 patients each. With the exclusion of cancer, both had a median of 2 comorbidities. Within cohort A, the most frequent underlying cancer was colorectal (5/26) and prostate cancer (5/26), and 77% of patients in Cohort A had received previous anti-cancer therapy. The most common presenting symptoms were cough and pyrexia in both cohorts. Frequent laboratory findings included lymphopenia, anaemia and elevated CRP in both cohorts, whilst hypokalaemia, hypoalbuminaemia and hypoproteinaemia was predominantly seen amongst patients with cancer. Median duration of admission was 7 days in both cohorts. The mortality rate was the same in both cohorts (23%), with median age of mortality of 80 years. Of cancer patients who died, all were advanced stage, had been treated with palliative intent and had received anti-cancer therapy within 13 days of admission. Conclusion: Old age, late stage of cancer diagnosis and multiple co-morbidities adversely influence the outcome of patients with COVID-19 positive patients. Whilst extra caution is warranted in the administration of anti-cancer therapies pertaining to the risk of immune-suppression, this data does not demonstrate a higher risk to cancer patients compared to their non-cancer counterparts.Peer reviewedFinal Published versio
A systematic review and meta-analysis on delaying surgery for urothelial carcinoma of bladder and upper tract urothelial carcinoma: Implications for the COVID19 pandemic and beyond
© 2022 Leow, Tan, Tan, Tan, Chan, Tikkinen, Kamat, Sengupta, Meng, Shariat, Roupret, Decaestecker, Vasdev, Chong, Enikeev, Giannarini, Ficarra and Teoh. This is an openaccess article distributed under the terms of the Creative Commons Attribution License (CC BY). https://creativecommons.org/licenses/by/4.0/Purpose: The COVID-19 pandemic has led to competing strains on hospital resources and healthcare personnel. Patients with newly diagnosed invasive urothelial carcinomas of bladder (UCB) upper tract (UTUC) may experience delays to definitive radical cystectomy (RC) or radical nephro-ureterectomy (RNU) respectively. We evaluate the impact of delaying definitive surgery on survival outcomes for invasive UCB and UTUC. Methods: We searched for all studies investigating delayed urologic cancer surgery in Medline and Embase up to June 2020. A systematic review and meta-analysis was performed. Results: We identified a total of 30 studies with 32,591 patients. Across 13 studies (n = 12,201), a delay from diagnosis of bladder cancer/TURBT to RC was associated with poorer overall survival (HR 1.25, 95% CI: 1.09–1.45, p = 0.002). For patients who underwent neoadjuvant chemotherapy before RC, across the 5 studies (n = 4,316 patients), a delay between neoadjuvant chemotherapy and radical cystectomy was not found to be significantly associated with overall survival (pooled HR 1.37, 95% CI: 0.96–1.94, p = 0.08). For UTUC, 6 studies (n = 4,629) found that delay between diagnosis of UTUC to RNU was associated with poorer overall survival (pooled HR 1.55, 95% CI: 1.19–2.02, p = 0.001) and cancer-specific survival (pooled HR of 2.56, 95% CI: 1.50–4.37, p = 0.001). Limitations included between-study heterogeneity, particularly in the definitions of delay cut-off periods between diagnosis to surgery. Conclusions: A delay from diagnosis of UCB or UTUC to definitive RC or RNU was associated with poorer survival outcomes. This was not the case for patients who received neoadjuvant chemotherapy.Peer reviewe
The Scottish Bladder Cancer Quality Performance Indicators Influencing Outcomes, Prognosis, and Surveillance (Scot BC Quality OPS) Clinical Project
The aim of the Scot BC Quality OPS clinical project is to create a reliable prospective data set for evaluating real-world effectiveness and efficiency consequent to standardisation and monitoring of bladder cancer treatment (through the national Quality Performance Indicator programme) and streamlined surveillance in Scotland. Several work packages have been created, reflecting wide clinical and research collaboration
Engineered antibodies: new possibilities for brain PET?
International audienceAlmost 50 million people worldwide are affected by Alzheimer's disease (AD), the most common neurodegenerative disorder. Development of disease-modifying therapies would benefit from reliable, non-invasive positron emission tomography (PET) biomarkers for early diagnosis, monitoring of disease progression, and assessment of therapeutic effects. Traditionally, PET ligands have been based on small molecules that, with the right properties, can penetrate the blood-brain barrier (BBB) and visualize targets in the brain. Recently a new class of PET ligands based on antibodies have emerged, mainly in applications related to cancer. While antibodies have advantages such as high specificity and affinity, their passage across the BBB is limited. Thus, to be used as brain PET ligands, antibodies need to be modified for active transport into the brain. Here, we review the development of radioligands based on antibodies for visualization of intrabrain targets. We focus on antibodies modified into a bispecific format, with the capacity to undergo transferrin receptor 1 (TfR1)-mediated transcytosis to enter the brain and access pathological proteins, e.g. amyloid-beta. A number of such antibody ligands have been developed, displaying differences in brain uptake, pharmacokinetics, and ability to bind and visualize the target in the brain of transgenic mice. Potential pathological changes related to neurodegeneration, e.g. misfolded proteins and neuroinflammation, are suggested as future targets for this novel type of radioligand. Challenges are also discussed, such as the temporal match of radionuclide half-life with the ligand's pharmacokinetic profile and translation to human use. In conclusion, brain PET imaging using bispecific antibodies, modified for receptor-mediated transcytosis across the BBB, is a promising method for specifically visualizing molecules in the brain that are difficult to target with traditional small molecule ligands
Kinin B1 Receptor Enhances the Oxidative Stress in a Rat Model of Insulin Resistance: Outcome in Hypertension, Allodynia and Metabolic Complications
BACKGROUND: Kinin B(1) receptor (B(1)R) is induced by the oxidative stress in models of diabetes mellitus. This study aims at determining whether B(1)R activation could perpetuate the oxidative stress which leads to diabetic complications. METHODS AND FINDINGS: Young Sprague-Dawley rats were fed with 10% D-Glucose or tap water (controls) for 8-12 weeks. A selective B(1)R antagonist (SSR240612) was administered acutely (3-30 mg/kg) or daily for a period of 7 days (10 mg/kg) and the impact was measured on systolic blood pressure, allodynia, protein and/or mRNA B(1)R expression, aortic superoxide anion (O(2)(*-)) production and expression of superoxide dismutase (MnSOD) and catalase. SSR240612 reduced dose-dependently (3-30 mg/kg) high blood pressure in 12-week glucose-fed rats, but had no effect in controls. Eight-week glucose-fed rats exhibited insulin resistance (HOMA index), hypertension, tactile and cold allodynia and significant increases of plasma levels of glucose and insulin. This was associated with higher aortic levels of O(2)(*-), NADPH oxidase activity, MnSOD and catalase expression. All these abnormalities including B(1)R overexpression (spinal cord, aorta, liver and gastrocnemius muscle) were normalized by the prolonged treatment with SSR240612. The production of O(2)(*-) in the aorta of glucose-fed rats was also measured in the presence and absence of inhibitors (10-100 microM) of NADPH oxidase (apocynin), xanthine oxidase (allopurinol) or nitric oxide synthase (L-NAME) with and without Sar[D-Phe(8)]des-Arg(9)-BK (20 microM; B(1)R agonist). Data show that the greater aortic O(2)(*-) production induced by the B(1)R agonist was blocked only by apocynin. CONCLUSIONS: Activation of kinin B(1)R increased O(2)(*-) through the activation of NADPH oxidase in the vasculature. Prolonged blockade of B(1)R restored cardiovascular, sensory and metabolic abnormalities by reducing oxidative stress and B(1)R gene expression in this model
Increased Renal Methylglyoxal Formation with Down-Regulation of PGC-1α-FBPase Pathway in Cystathionine γ-Lyase Knockout Mice
We have previously reported that hydrogen sulfide (H2S), a gasotransmitter and vasodilator has cytoprotective properties against methylglyoxal (MG), a reactive glucose metabolite associated with diabetes and hypertension. Recently, H2S was shown to up-regulate peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, a key gluconeogenic regulator that enhances the gene expression of the rate-limiting gluconeogenic enzyme, fructose-1,6-bisphosphatase (FBPase). Thus, we sought to determine whether MG levels and gluconeogenic enzymes are altered in kidneys of 6–22 week-old cystathionine γ-lyase knockout (CSE-/-; H2S-producing enzyme) male mice. MG levels were determined by HPLC. Plasma glucose levels were measured by an assay kit. Q-PCR was used to measure mRNA levels of PGC-1α and FBPase-1 and -2. Coupled-enzymatic assays were used to determine FBPase activity, or triosephosphate levels. Experimental controls were either age-matched wild type mice or untreated rat A-10 cells. Interestingly, we observed a significant decrease in plasma glucose levels along with a significant increase in plasma MG levels in all three age groups (6–8, 14–16, and 20–22 week-old) of the CSE-/- mice. Indeed, renal MG and triosephosphates were increased, whereas renal FBPase activity, along with its mRNA levels, were decreased in the CSE-/- mice. The decreased FBPase activity was accompanied by lower levels of its product, fructose-6-phosphate, and higher levels of its substrate, fructose-1,6-bisphosphate in renal extracts from the CSE-/- mice. In agreement, PGC-1α mRNA levels were also significantly down-regulated in 6-22 week-old CSE-/- mice. Furthermore, FBPase-1 and -2 mRNA levels were reduced in aorta tissues from CSE-/- mice. Administration of NaHS, a H2S donor, increased the gene expression of PGC-1α and FBPase-1 and -2 in cultured rat A-10 cells. In conclusion, overproduction of MG in CSE-/- mice is due to a H2S-mediated down-regulation of the PGC-1α-FBPase pathway, further suggesting the important role of H2S in the regulation of glucose metabolism and MG generation
- …
