227 research outputs found

    A Layered Architecture for Implementing Autonomous Planning Agents

    Get PDF
    This paper briefly describes an architecture for implementing autonomous agents that embody sophisticated planning capabilities. In particular, we are currently working on a two-pass vertically layered architecture, designed to deal with a complex environment. Such an architecture is currently based on three levels of abstraction (i.e., situated, strategic and deliberative), but has been designed for being easily generalized to a N-levels architecture, depending on the given environment and task complexity. Each level controls the underlying one, so that an agent behavior is supported by a clean hierarchical organization. Our autonomous agents act in a virtual world created for a computer game, and must interact with it by suitably planning and executing complex actions

    The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations

    Get PDF
    (ImH)[trans-RuCl4(DMSO-S)(Im)], (Im = imidazole, DMSO-S = S-bonded dimethylsulfoxide), NAMI-A, is the first anticancer ruthenium compound that successfully completed Phase I clinical trials. NAMI-A shows a remarkable activity against lung metastases of solid tumors, but is not effective in the reduction of primary cancer. The structurally similar (ImH)[trans-RuCl4(Im)(2)], ICR (or KP418), and its indazole analog (KP1019) are promising candidate drugs in the treatment of colorectal cancers, but have no antimetastatic activity. Despite the pharmacological relevance of these compounds, no rationale has been furnished to explain their markedly different activity. While the nature of the chemical species responsible for their antimetastatic/anticancer activity has not been determined, it has been suggested that the difference between reduction potentials of NAMI-A and ICR may be the key to the different biological responses they induce. In this work, Density Functional Theory calculations were performed to investigate the hydrolysis of NAMI-A and ICR in both Ru-III and Ru-II oxidation states, up to the third aquation. In line with experimental findings, our calculations provide a picture of the hydrolysis of NAMI-A and ICR mainly as a stepwise loss of chloride ligands. While dissociation of Im is unlikely under neutral conditions, that of DMSO becomes competitive with the loss of chloride ions as the hydrolysis proceeds. Redox properties of NAMI-A and ICR and of their most relevant hydrolytic intermediates were also studied in order to monitor the effects of biological reductants on the mechanism of action. Our findings may contribute to the identification of the active compounds that interact with biological targets, and to explain the different biological activity of NAMI-A and ICR

    Higher and lower supramolecular orders for the design of self-assembled heterochiral tripeptide hydrogel biomaterials

    Get PDF
    The self-assembly behaviour of the eight stereoisomers of Val\u2013Phe\u2013Phe tripeptides under physiological conditions is assessed by several spectroscopy and microscopy techniques. We report the first examples of self-organised hydrogels from tripeptides in the L\u2013D\u2013L or D\u2013L\u2013D configuration, besides the expected gels with the D\u2013L\u2013L or L\u2013D\u2013D configuration, thus widening the scope for using amino acid chirality as a tool to drive self-assembly. Importantly, the positions of D- and L-amino acids in the gelling tripeptides determine a higher or lower supramolecular order, which translates into macroscopic gels with different rheological properties and thermal behaviours. The more durable hydrogels perform well in cytotoxicity assays, and also as peptides in solution. An appropriate design of the chirality of self-assembling sequences thus allows for the fine-tuning of the properties of the gel biomaterials. In conclusion, this study adds key details of supramolecular organization that will assist in the ex novo design of assembling chiral small molecules for their use as biomaterials

    Molecular interactions of carbapenem antibiotics with the multidrug efflux transporter acrb of escherichia coli

    Get PDF
    The drug/proton antiporter AcrB, engine of the major efflux pump AcrAB(Z)-TolC of Escherichia coli and other bacteria, is characterized by its impressive ability to transport chemically diverse compounds, conferring a multi-drug resistance (MDR) phenotype. Although hundreds of small molecules are known to be AcrB substrates, only a few co-crystal structures are available to date. Computational methods have been therefore intensively employed to provide structural and dynamical fingerprints related to transport and inhibition of AcrB. In this work, we performed a systematic computational investigation to study the interaction between representative carbapenem antibiotics and AcrB. We focused on the interaction of carbapenems with the so-called distal pocket, a region known for its importance in binding inhibitors and substrates of AcrB. Our findings reveal how the different physico-chemical nature of these antibiotics is reflected on their binding preference for AcrB. The molecular-level information provided here could help design new antibiotics less susceptible to the efflux mechanism

    Recognition of quinolone antibiotics by the multidrug efflux transporter MexB of Pseudomonas aeruginosa

    Get PDF
    The drug/proton antiporter MexB is the engine of the major efflux pump MexAB-OprM in Pseudomonas aeruginosa. This protein is known to transport a large variety of compounds, including antibiotics, thus conferring a multi-drug resistance phenotype. Due to the difficulty of producing co-crystals, only two X-ray structures of MexB in a complex with ligands are available to date, and mechanistic aspects are largely hypothesized based on the body of data collected for the homologous protein AcrB of Escherichia coli. In particular, a recent study (Ornik-Cha, Wilhelm, Kobylka et al., Nat. Commun., 2021, 12, 6919) reported a co-crystal structure of AcrB in a complex with levofloxacin, an antibiotic belonging to the important class of (fluoro)-quinolones. In this work, we performed a systematic ensemble docking campaign coupled to the cluster analysis and molecular-mechanics optimization of docking poses to study the interaction between 36 quinolone antibiotics and MexB. We additionally investigated surface complementarity between each molecule and the transporter and thoroughly assessed the computational protocol adopted against the known experimental data. Our study reveals different binding preferences of the investigated compounds towards the sub-sites of the large deep binding pocket of MexB, supporting the hypothesis that MexB substrates oscillate between different binding modes with similar affinity. Interestingly, small changes in the molecular structure translate into significant differences in MexB-quinolone interactions. All the predicted binding modes are available for download and visualization at the following link: https://www.dsf.unica.it/dock/mexb/quinolones

    Chronic Red Bull Consumption during Adolescence: Effect on Mesocortical and Mesolimbic Dopamine Transmission and Cardiovascular System in Adult Rats

    Get PDF
    Energy drinks are very popular nonalcoholic beverages among adolescents and young adults for their stimulant effects. Our study aimed to investigate the effect of repeated intraoral Red Bull (RB) infusion on dopamine transmission in the nucleus accumbens shell and core and in the medial prefrontal cortex and on cardiac contractility in adult rats exposed to chronic RB consumption. Rats were subjected to 4 weeks of RB voluntary consumption from adolescence to adulthood. Monitoring of in vivo dopamine was carried out by brain microdialysis. In vitro cardiac contractility was studied on biomechanical properties of isolated left-ventricular papillary muscle. The main finding of the study was that, in treated animals, RB increased shell dopamine via a nonadaptive mechanism, a pattern similar to that of drugs of abuse. No changes in isometric and isotonic mechanical parameters were associated with chronic RB consumption. However, a prolonged time to peak tension and half-time of relaxation and a slower peak rate of tension fall were observed in RB-treated rats. It is likely that RB treatment affects left-ventricular papillary muscle contraction. The neurochemical results here obtained can explain the addictive properties of RB, while the cardiovascular investigation findings suggest a hidden papillary contractility impairment

    Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape

    Get PDF
    Understanding molecular recognition of small molecules by proteins in atomistic detail is key for drug design. Molecular docking is a widely used computational method to mimic ligand-protein association in silico. However, predicting conformational changes occurring in proteins upon ligand binding is still a major challenge. Ensemble docking approaches address this issue by considering a set of different conformations of the protein obtained either experimentally or from computer simulations, e.g., molecular dynamics. However, holo structures prone to host (the correct) ligands are generally poorly sampled by standard molecular dynamics simulations of the apo protein. In order to address this limitation, we introduce a computational approach based on metadynamics simulations called ensemble docking with enhanced sampling of pocket shape (EDES) that allows holo-like conformations of proteins to be generated by exploiting only their apo structures. This is achieved by defining a set of collective variables that effectively sample different shapes of the binding site, ultimately mimicking the steric effect due to the ligand. We assessed the method on three challenging proteins undergoing different extents of conformational changes upon ligand binding. In all cases our protocol generates a significant fraction of structures featuring a low RMSD from the experimental holo geometry. Moreover, ensemble docking calculations using those conformations yielded in all cases native-like poses among the top-ranked ones

    Holo-like and Druggable Protein Conformations from Enhanced Sampling of Binding Pocket Volume and Shape

    Get PDF
    Understanding molecular recognition of small molecules by proteins in atomistic detail is key for drug design. Molecular docking is a widely used computational method to mimic ligand–protein association in silico. However, predicting conformational changes occurring in proteins upon ligand binding is still a major challenge. Ensemble docking approaches address this issue by considering a set of different conformations of the protein obtained either experimentally or from computer simulations, e.g., molecular dynamics. However, holo structures prone to host (the correct) ligands are generally poorly sampled by standard molecular dynamics simulations of the apo protein. In order to address this limitation, we introduce a computational approach based on metadynamics simulations called ensemble docking with enhanced sampling of pocket shape (EDES) that allows holo-like conformations of proteins to be generated by exploiting only their apo structures. This is achieved by defining a set of collective variables ..

    Design of a hydrophobic tripeptide that self-assembles into amphiphilic superstructures forming a hydrogel biomaterial

    Get PDF
    We report the rational design of a heterochiral hydrophobic tripeptide self-assembling into amphiphilic D-superstructures that yield a self-supportive hydrogel at physiological pH. The material endures cell culture conditions and sustains fibroblast proliferation. Tripeptide superstructures are thoroughly analysed by several techniques
    corecore