
A Layered Architecture for Implementing Autonomous Planning Agents

Giuliano Armano,
(1)

 Vanna Galaffu,
(1)

 Carlo Muntoni,
(2)

 and Eloisa Vargiu
(2)

(1) DIEE, Dipartimento di Ingegneria Elettrica ed Elettronica, Università di Cagliari, Piazza d’Armi,
I-09123, Cagliari, Italy, email: armano@diee.unica.it; galaffu@diee.unica.it

(2) CRS4, Centro di Ricerca, Sviluppo e Studi Superiori in Sardegna, VI Strada OVEST, Z.I. Macchiareddu
I-09010 Uta (CA), Italy, email: muntoni@crs4.it; eloisa@crs4.it

Abstract

This paper briefly describes an architecture
for implementing autonomous agents that embody
sophisticated planning capabilities. In particular,
we are currently working on a two-pass vertically
layered architecture, designed to deal with a
complex environment. Such an architecture is
currently based on three levels of abstraction (i.e.,
situated, strategic and deliberative), but has been
designed for being easily generalized to a N-levels
architecture, depending on the given environment
and task complexity. Each level controls the
underlying one, so that an agent behavior is
supported by a clean hierarchical organization.
Our autonomous agents act in a virtual world
created for a computer game, and must interact
with it by suitably planning and executing complex
actions.

1. Introduction

In the last few years, AI researchers have
concentrated their efforts in the field of intelligent
autonomous agents, i.e., on systems capable of
autonomous sensing, reasoning and acting in a
complex environment. As in this paper we are
mainly concerned about architectures, let us
briefly recall that an agent architecture is
essentially a map of the internals of an agent (i.e.,
its data structures, the operations that may be
performed on them, and the corresponding control
flows [1]). In particular, as far as two-pass
vertically layered architectures are concerned,
decision making is realized via various software
layers; each layer been devoted to deal with the
environment at different levels of abstractions. In
such architectures information flows up until a
layer able to deal with the received stimulus is
reached, and then the control flows back down to
the actuators (e.g., INTERRAP [2]).

In this paper, we briefly illustrate a layered
architecture that exhibits planning capabilities in
an environment whose complexity is comparable
to the one that characterizes the real world. After a
short introduction on planning issues, we describe
in more detail the proposed architecture, together
with some experimental results.

2. Planning Agents

It is well known that the AI planning
community has greatly promoted innovations in
agents’ design, and that planning capabilities are
one of the most important features to be
implemented in an autonomous agent. In
particular, the introduction of intelligent
autonomous agents has promoted investigations
on planning algorithms with the aim of using them
in real-world domains. To this end, it is worth
pointing out that a relaxation of all the simplifying
assumptions made by classical planners about
their working environment has to be made. In
particular, atomic actions, deterministic effects,
accessibility, and static environment are
simplifying hypotheses that no longer hold for
real-world domains (see, for example, [3] and [4]
for a discussion on this topic). In fact, a real-world
domain is usually (i) not-completely controllable,
i.e., an agent does not have complete control over
its actions, (ii) not-completely accessible, i.e., it is
impossible for an agent to have complete
knowledge about the underlying environment, and
(iii) dynamic, i.e., the presence of other agents, or
exogenous events can modify the underlying
environment. In the following, for the sake of
simplicity, we will characterize as “complex” an
environment that exhibits such characteristics.

To deal with a complex environment, several
extensions of classical planning algorithms have
been proposed. Such extensions can be classified
according to several features, thus giving rise to
different classification hierarchies. In our opinion,
complex domains need to point out how a
planning agent adapts a plan to the changes
occurred in its operating environment while trying
to attain a goal. To this end, one may try to deal
with any change from an “open-loop” perspective,
or else to accept the possibility of adopting a
“closed-loop” approach based on re-planning.

Contingency planners represent a typical
example of the former approach, whose
underlying strategy consists of handling off-line
any source of uncertainty (see, for example,
WARPLAN-C [5], CNLP [6]). As far as the latter
approach is concerned, let us recall that the
integration of planning and execution can lead to
powerful control strategies (see, for example, [7]).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Cagliari

https://core.ac.uk/display/54601929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Of course, a plan is updated only whenever a
change in the environment makes it obsolete. The
underlying hypothesis is that such a kind of
planners should be highly reactive against
unexpected environmental changes.

The planning capabilities of the proposed
architecture allow an agent to operate in a
complex environment while exploiting a “closed-
loop” approach based on local re-planning. The
search complexity is controlled by allowing an
agent to make plans at different levels of
abstraction. In this way, only part of the original
plan must be modified according to a change on
the environment.

3. A Three-Layers Architecture

We are currently implementing a two-pass
vertically layered architecture equipped with three
layers, i.e., situated, strategic and deliberative (see
figure 1). Each layer is numbered according to its
level of abstraction (1, 2, and 3, respectively).
Thus, level 3 is more abstract than level 2, and so

on. It is worth pointing out in advance that the
proposed architecture is completely scalable; in
fact, it might be easily equipped with N layers,
depending on the environment complexity.
Furthermore, whereas in classical layered
architectures each level is usually devoted to cope
with different behavioral characteristics, in the
proposed architecture each layer is –at least
conceptually– identical to any other one, each of
them being able to embody reactive, deliberative
and proactive functionality. Only the
“responsibilities” of a layer change radically,
depending on the level of abstraction being
considered. According to the features that

characterize a two-pass vertically layered
architecture, the information flows from level 1 up
to level 3, whereas the control flows from level 3
down to level 1. Thus, an agent that receives an
input from its environment lets the information
flow until a suitable layer able to deal with it is
found. Then, the reactive module is devoted to
decide whether or not the current activity has to be
continued or aborted. In the latter case, the
deliberative module is devoted to set a new goal,
depending on the nature of the input.

Now, let us focus our attention on the
hierarchical planning process, with the aim of
explaining how agents are able to solve difficult
tasks in a complex environment. As expected, plan
generation is performed on different layers, each
one equipped with a suitable planner. Each
planner is allowed to use only the operators
available at the corresponding level. It is worth
pointing out that, whereas typical hierarchical
planners use a fixed (a priori) decomposition
strategy (e.g., HTN [8], ABSTRIPS [9]), in the
proposed architecture, the decomposition is
performed at runtime and distributed on several
layers. Each layer is devoted to perform a (local)
planning on any goal imposed by its overlying
planner (if any), or to perform a re-planning
activity, if needed. Thus, a goal to be attained at
level K enforces other goals (i.e., plans) on the
underlying K-1 levels. That is why, an abstract
operator defined for a given layer may hide a
complex plan on the underlying layer. As agents
generate hierarchical plans, a complex plan can be
easily adapted in response to any unpredictable
event occurred while executing it; in this way any
re-planning activity requires only a local search at
the proper level of abstraction.

As far as predicates and operators are
concerned, it is well known that hierarchical
planning can be done by abstracting over
predicates or over operators, both mechanisms
being successfully used to reduce the
computational complexity of the search ([10]). We
adopted a three-levels hierarchy of predicates,
according to the layers that make up the current
release of the proposed architecture. Predicates
can be ground or abstract, depending on their
allocation. Only predicates defined at level 1 are
ground, whereas every abstract predicate is
defined on top of other predicates (the visibility of
level K being strictly reduced to level K-1).
Moreover, each layer has its own set of operators
that can be managed by the corresponding
planning module. Operators can be ground or
abstract, and are defined according to a STRIPS-like
syntax (we prefer to use the term “ground”,
instead of “atomic”, to stress the fact that
considering operators no further decomposable is
only a convention). Note that, our abstraction

Level 1

Level 2

Level 3

inputsactions

situated

KB

KB

KB

Control

strategic

deliberative

Information

Fig. 1 – A three-layers, two-pass, vertical architecture.

hierarchy is not generated by dropping literals
from the original problem definition. In this sense,
our abstract operators are more similar to HTN
compound tasks than to abstraction hierarchies
described in ABSTRIPS. On the other hand, operator
expansion is similar to the one performed in
ABSTRIPS.

It is worth pointing out that there is no need of
generating a completely detailed plan before
starting execution; in fact, execution starts when
the first situated plan has been generated (as an
expansion of a the abstract operator that starts the
plan at the strategic level). In this way, a plan is
progressively generated and executed in an
interleaved way. The general form of a layered
plan is shown in figure 2 (for the sake of
simplicity, the deliberative layer has been
disregarded). This strategy allows an agent to
elaborate a plan in small “chunks”, whose detailed
representation can be deferred until actually
needed. In this way, a complex task can be started

even though only a minimal part of the entire plan
has been generated, thanks to the adopted “closed-
loop” planning strategy. Note that, if a plan at the
situated layer fails, local re-planning is attempted;
if no solution is found, the failure is notified to the
upper (strategic) level, where local re-planning is
attempted at a higher level of abstraction, and so
on.

The adopted strategy (which falls into the
category of Interleaved Planning and Execution),
exploits the architecture by moving any event that
cannot be handled by the current layer up to the
next (more abstract) one. In this way, local re-
planning can be used as a general mechanism to
deal with unexpected events, without being always
compelled to start a global re-planning activity.
Moreover, in such a process an agent does not
need to have a complete knowledge of all the
information required to successfully complete the
whole plan: thanks to the interleaved strategy that
has been implemented, during plan execution it
can gather the information required to expand in
the proper way abstract operators.

4. Experimental Results

The proposed architecture has been developed
for an ongoing project aimed at developing a
computer game. The game lets the user play
within a virtual city populated by two different
kinds of entities, i.e., physical and network
“avatars”. The former ones represent inhabitants
of the virtual world, whereas the latter ones (e.g.,
computer viruses) live within a virtual computer
network, very similar to Internet. A prototype of
the system has already been implemented, using
CLOS as a target language for the sake of rapid
prototyping. The current release is aimed at giving
avatars planning capabilities able to cope with the
complex environment that characterizes the game.
In particular, physical avatars must be able to
move within the virtual world and to interact with
its objects. Moreover, they must be able to exploit
the capabilities of the underlying virtual computer
network, to send and receive information. As
already pointed out, agents are able to deal with a
given problem at different levels of abstraction.
For each layer, actions schemata are suitably
represented according to a STRIPS-like syntax.
Planning results from the interaction among the
planners located at different layers of the
architecture, and the behavior of each planner
follows a UCPOP-like strategy ([11]).

The main difference among the domains
defined on different layers is the abstraction
adopted to represent an agent behavior and
knowledge. For example, the (goto ?l1 ?l2) action
–strategic level– requires, as a precondition, that
the agent must be near to the starting location (is-
near ?l1). The post-condition (effect) is that the
agent must be near to its destination (is-near ?l2).
The is-near predicate becomes more detailed at
the situated level, where it is expanded as
(:or (next-to ?l1) (inside ?l1)), the or being
resolved at runtime.

Let us consider, now, the following sample
problem: “an agent is located inside a building
connected to the network. Its goal is to retrieve a
file located in another building (not connected to
the network), and to send it to the mailbox of its
corresponding player”. To solve the problem at the
strategic level the agent must (i) go to the physical
location where the file is located, (ii) get the file,
(iii) return to the initial building and (iv) send the
file by email. Of course, the goal that must be
attained at the strategic level is set by the
deliberative level. After that, a backward search is
started that carries out the creation of a plan at the
strategic level. The actions of the strategic level
are abstract operators that need to be further
expanded at the situated level. For example, the
strategic operator goto originates a planning
problem at the situated level, which is solved by

SituatedLevel

Strategic Level Action

Plan

Fig. 2 – A typical hierarchical plan.

using the situated operators open-door, go-outside,
and move. The latter operators are to be considered
ground and are implemented by suitable actions
that act on (and modify) the underlying virtual
environment.

5. Conclusions and Future Work

In this paper, a two-pass layered architecture
for implementing autonomous planning agents has
been briefly outlined. Agents built upon such an
architecture are able to deal with a complex
environment. Currently, three levels of abstraction
(i.e., situated, strategic and deliberative), have
been implemented, although a N-levels
architecture is also feasible, depending on the
given environment and task complexity. Each
level controls the underlying one, so that an agent
behavior is supported by a clean hierarchical
organization. Agents implement “avatars” that act
in a virtual world created for a computer game.
The main mechanism exploited to interact with
such a world is an interleaved iteration of planning
and execution. A virtual computer network is also
available, to give physical avatars the capability of
performing typical actions allowed on Internet
(telnet, ftp, etc.). Network-based entities (e.g.,
computer viruses and hacking tools) are
implemented using agents, too.

As far as future work is concerned, we are
currently studying the problem of giving agents
the capability of learning abstract operators by
examining their own plans. Furthermore,
complexity issues, aimed at characterizing re-
planning activities according to the hypotheses
made about the underlying dynamic environment,
are currently under study.

Acknowledgements

This work has been carried out under the joint
project “Side-EffectZ”, which involves CRS4 1

and Mediola. 2 We wish to thank M. Agelli
(CRS4) and G. Dettori (Mediola) for their useful
suggestions and valuable help.

References

[1] Wooldridge, M., “Intelligent Agents”, in
G. Weiss (ed) Multiagent Systems, MIT Press,
April 1999.

[2] Muller, J., “A cooperation model for
autonomous agents”, in J.P Muller, M.
Wooldridge and N.R. Jenning (eds) Intelligent

1 Centro Ricerche Sviluppo e Studi Superiori in Sardegna.
2 Mediola is a company that works on multimedia, games,

and Internet-based applications.

Agents III, LNAI Vol. 1193, pages 245-260.
Springer-Verlag, Berlin, Germany, 1997.

[3] Weld, D., “An Introduction to Least
Commitment Planning”, AI Magazine, pp. 27-61,
1994.

[4] Nareyek, A., “A Planning Model for Agents
in Dynamic and Uncertain Real-Time
Environments”, in Proceedings of the 1998 AIPS
Workshop on Integrating Planning, Scheduling
and Execution in Dynamic and Uncertain
Environments, pp. 7-14, AAAI Press, Menlo Park,
California, 1998.

[5] Warren, D.H.D., “Generating Conditional
Plans and Programs”, in Proc. of the Summer
Conference on AI and Simulation on Behavior, pp.
344-354, 1976.

[6] Peot, M., and Smith, D., “Conditional
Nonlinear Planning”, in Proc. of the 1st

International Conference on AI Planning Systems,
pp. 189-197, 1992.

[7] Nourbakhsh, I., Interleaving Planning and
Execution for Autonomous Robots, Kluwer, Academic
Publishers, Boston, 1997.

[8] Erol, K., Hendler, J., and Nau, D., “UCMP: A
Sound and Complete Procedure for Hierarchical
Task-Network Planning”, in Proc. of the Second
International Conference on AI Planning Systems
(AIPS-94), pp. 249-254, June, 1994.

[9] Knoblock, C.A., “Learning Abstraction
Hierarchies for Problem Solving”, in Proceedings
of the Height National Conference on AI, pp. 993-
928, AAAI Press, Menlo Park, CA, 1991.

[11] Penberthy, J.S., and Weld, D., “UCPOP: A
sound, complete, partial order planner for ADL”,
in Proc. of the 3rd International Conference on
Principles of Knowledge Representation and
Reasoning , pp. 103-114, Oct 1992.

[10] Knoblock, C. A., “An analysis of ABSTRIPS”,
in Proc. of the 1st International. Conference AI
Planning Systems, June 1992.

