42 research outputs found

    Desulfotomaculum arcticum sp nov., a novel spore-formin, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard

    Get PDF
    Strain 15T is a novel spore-forming, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Sulfate could be replaced by sulfite or thiosulfate. Hydrogen, formate, lactate, propionate, butyrate, hexanoate, methanol, ethanol, propanol, butanol, pyruvate, malate, succinate, fumarate, proline, alanine and glycine were used as electron donors in the presence of sulfate. Growth occurred with pyruvate as sole substrate. Optimal growth was observed at pH 7·1–7·5 and concentrations of 1–1·5 % NaCl and 0·4 % MgCl2. Strain 15T grew between 26 and 46·5 °C and optimal growth occurred at 44 °C. Therefore, strain 15T apparently cannot grow at in situ temperatures of Arctic sediments from where it was isolated, and it was proposed that it was present in the sediment in the form of spores. The DNA G+C content was 48·9 mol%. Strain 15T was most closely related to Desulfotomaculum thermosapovorans MLFT (93·5 % 16S rRNA gene sequence similarity). Strain 15T represents a novel species, for which the name Desulfotomaculum arcticum sp. nov. is proposed. The type strain is strain 15T (=DSM 17038T=JCM 12923T)

    Acetate, lactate, propionate, and isobutyrate as electron donors for iron and sulfate reduction in Arctic marine sediments, Svalbard

    Get PDF
    The contribution of volatile fatty acids (VFA) as e–-donors for anaerobic terminal oxidation of organic carbon through iron and sulfate reduction was studied in Arctic fjord sediment. Dissolved inorganic carbon, Fe2+, VFA concentrations, and sulfate reduction were monitored in slurries from the oxidized (0–2 cm) and the reduced (5–9 cm) zone. In the 0–2 cm layer, 2/3 of the mineralization could be attributed to sulfate reduction and 1/3 to iron reduction. In the 5–9 cm layer, sulfate reduction was the sole mineralization process. Acetate and lactate turnover rates were measured by radiotracer. Inhibition of sulfate reduction with selenate resulted in the accumulation of acetate, propionate, and isobutyrate. The acetate turnover rates determined by radiotracer and accumulation after inhibition were similar. VFA turnover accounted for 21% and 52% of the mineralization through sulfate reduction in the 0–2 and 5–9 cm layer, respectively. Acetate and lactate turnover in the inhibited 0–2 cm slurry was attributed to iron reduction and accounted for 10% and 2% of the iron reduction. Therefore, 88% and 79% of the iron and sulfate reduction in the 0–2 cm layer, respectively, must be fueled by alternative e−-donors. The accumulation of VFA in the selenate–inhibited 0–2 cm slurry did not enhance iron reduction, indicating that iron reducers were not limited by VFA availability

    Desulfuromonas svalbardensis sp nov and Desulfuromusa ferrireducens sp nov., psychrophilic, Fe(III)-reducing bacteria isolated from Arctic sediments, Svalbard

    Get PDF
    Two psychrophilic, Gram-negative, rod-shaped, motile bacteria (strains 112T and 102T) that conserved energy from dissimilatory Fe(III) reduction concomitant with acetate oxidation were isolated from permanently cold Arctic marine sediments. Both strains grew at temperatures down to -2 degrees C, with respective temperature optima of 14 degrees C and 14-17 degrees C for strains 112T and 102T. The isolated strains reduced Fe(III) using common fermentation products such as acetate, lactate, propionate, formate or hydrogen as electron donors, and they also grew with fumarate as the sole substrate. As alternatives to Fe(III), they reduced fumarate, S0 and Mn(IV). Based on 16S rRNA gene sequence similarity, strain 112T was most closely related to Desulfuromonas acetoxidans (97.0 %) and Desulfuromonas thiophila NZ27T (95.5 %), and strain 102T to Malonomonas rubra Gra Mal 1T (96.3 %) and Desulfuromusa succinoxidans GylacT (95.9 %) within the Deltaproteobacteria. Strains 112T and 102T therefore represent novel species, for which the names Desulfuromonas svalbardensis sp. nov. (type strain 112T=DSM 16958T=JCM 12927T) and Desulfuromusa ferrireducens sp. nov. (type strain 102T=DSM 16956T=JCM 12926T) are proposed

    Spatial and temporal patterns of pore water chemistry in the inter-tidal zone of a high energy beach

    Get PDF
    Submarine groundwater discharge (SGD) is a ubiquitous source of meteoric fresh groundwater and recirculating seawater to the coastal ocean. Due to the hidden distribution of SGD, as well as the hydraulic- and stratigraphy-driven spatial and temporal heterogeneities, one of the biggest challenges to date is the correct assessment of SGD-driven constituent fluxes. Here, we present results from a 3-dimensional seasonal sampling campaign of a shallow subterranean estuary in a high-energy, meso-tidal beach, Spiekeroog Island, Northern Germany. We determined beach topography and analyzed physico-chemical and biogeochemical parameters such as salinity, temperature, dissolved oxygen, Fe(II) and dissolved organic matter fluorescence (FDOM). Overall, the highest gradients in pore water chemistry were found in the cross-shore direction. In particular, a strong physico-chemical differentiation between the tidal high water and low water line was found and reflected relatively stable in- and exfiltrating conditions in these areas. Contrastingly, in between, the pore water compositions in the existing foreshore ridge and runnel system were very heterogeneous on a spatial and temporal scale. The reasons for this observation may be the strong morphological changes that occur throughout the entire year, which affect the exact locations and heights of the ridge and runnel structures and associated flow paths. Further, seasonal changes in temperature and inland hydraulic head, and the associated effect on microbial mediated redox reactions likely overprint these patterns. In the long-shore direction the pore water chemistry varied less than the along the cross-shore direction. Variation in long-shore direction was probably occurring due to topography changes of the ridge-runnel structure and a physical heterogeneity of the sediment, which produced non-uniform groundwater flow conditions. We conclude that on meso-tidal high energy beaches, the rapidly changing beach morphology produces zones with different approximations to steady-state conditions. Therefore, we suggest that zone-specific endmember sampling is the optimal strategy to reduce uncertainties of SGD-driven constituent fluxes

    Spatial and Temporal Patterns of Pore Water Chemistry in the Inter-Tidal Zone of a High Energy Beach

    Get PDF
    Submarine groundwater discharge (SGD) is a ubiquitous source of meteoric fresh groundwater and recirculating seawater to the coastal ocean. Due to the hidden distribution of SGD, as well as the hydraulic- and stratigraphy-driven spatial and temporal heterogeneities, one of the biggest challenges to date is the correct assessment of SGD-driven constituent fluxes. Here, we present results from a 3-dimensional seasonal sampling campaign of a shallow subterranean estuary in a high-energy, meso-tidal beach, Spiekeroog Island, Northern Germany. We determined beach topography and analyzed physico-chemical and biogeochemical parameters such as salinity, temperature, dissolved oxygen, Fe(II) and dissolved organic matter fluorescence (FDOM). Overall, the highest gradients in pore water chemistry were found in the cross-shore direction. In particular, a strong physico-chemical differentiation between the tidal high water and low water line was found and reflected relatively stable in- and exfiltrating conditions in these areas. Contrastingly, in between, the pore water compositions in the existing foreshore ridge and runnel system were very heterogeneous on a spatial and temporal scale. The reasons for this observation may be the strong morphological changes that occur throughout the entire year, which affect the exact locations and heights of the ridge and runnel structures and associated flow paths. Further, seasonal changes in temperature and inland hydraulic head, and the associated effect on microbial mediated redox reactions likely overprint these patterns. In the long-shore direction the pore water chemistry varied less than the along the cross-shore direction. Variation in long-shore direction was probably occurring due to topography changes of the ridge-runnel structure and a physical heterogeneity of the sediment, which produced non-uniform groundwater flow conditions. We conclude that on meso-tidal high energy beaches, the rapidly changing beach morphology produces zones with different approximations to steady-state conditions. Therefore, we suggest that zone-specific endmember sampling is the optimal strategy to reduce uncertainties of SGD-driven constituent fluxes

    Deltaproteobacteria (Pelobacter) and Methanococcoides are responsible for choline-dependent methanogenesis in a coastal saltmarsh sediment

    Get PDF
    Coastal saltmarsh sediments represent an important source of natural methane emissions, much of which originates from quaternary and methylated amines, such as choline and trimethylamine. In this study, we combine DNA stable isotope probing with high throughput sequencing of 16S rRNA genes and 13C2-choline enriched metagenomes, followed by metagenome data assembly, to identify the key microbes responsible for methanogenesis from choline. Microcosm incubation with 13C2-choline leads to the formation of trimethylamine and subsequent methane production, suggesting that choline-dependent methanogenesis is a two-step process involving trimethylamine as the key intermediate. Amplicon sequencing analysis identifies Deltaproteobacteria of the genera Pelobacter as the major choline utilizers. Methanogenic Archaea of the genera Methanococcoides become enriched in choline-amended microcosms, indicating their role in methane formation from trimethylamine. The binning of metagenomic DNA results in the identification of bins classified as Pelobacter and Methanococcoides. Analyses of these bins reveal that Pelobacter have the genetic potential to degrade choline to trimethylamine using the choline-trimethylamine lyase pathway, whereas Methanococcoides are capable of methanogenesis using the pyrrolysine-containing trimethylamine methyltransferase pathway. Together, our data provide a new insight on the diversity of choline utilizing organisms in coastal sediments and support a syntrophic relationship between Bacteria and Archaea as the dominant route for methanogenesis from choline in this environment

    Integrated analysis of bacterial and microeukaryotic communities from differentially active mud volcanoes in the Gulf of Cadiz

    Get PDF
    The present study assesses the diversity and composition of sediment bacterial and microeukaryotic communities from deep-sea mud volcanoes (MVs) associated with strike-slip faults in the South-West Iberian Margin (SWIM). We used a 16S/18S rRNA gene based pyrosequencing approach to characterize and correlate the sediment bacterial and microeukaryotic communities from MVs with differing gas seep regimes and from an additional site with no apparent seeping activity. In general, our results showed significant compositional changes of bacterial and microeukaryotic communities in sampling sites with different seepage regimes. Sediment bacterial communities were enriched with Methylococcales (putative methanotrophs) but had lower abundances of Rhodospirillales, Nitrospirales and SAR202 in the more active MVs. Within microeukaryotic communities, members of the Lobosa (lobose amoebae) were enriched in more active MVs. We also showed a strong correlation between Methylococcales populations and lobose amoeba in active MVs. This study provides baseline information on the diversity and composition of bacterial and microeukaryotic communities in deep-sea MVs associated with strike-slip faults

    Desultovibrio frigidus sp nov and Desulfovibrio ferfireducens sp nov., psychrotolerant bacteria isolated from Arctic fiord sediments (Svalbard) with the ability to reduce Fe(III)

    No full text
    Strains 18T, 61T and 77 were isolated from two permanently cold fjord sediments on the west coast of Svalbard. The three psychrotolerant strains, with temperature optima at 20–23 °C, were able to grow at the freezing point of sea water, −2 °C. The strains oxidized important fermentation products such as hydrogen, formate and lactate with sulfate as the electron acceptor. Sulfate could be replaced by sulfite, thiosulfate or elemental sulfur. Poorly crystalline and soluble Fe(III) compounds were reduced in sulfate-free medium, but no growth occurred under these conditions. In the absence of electron acceptors, fermentative growth was possible. The pH optimum for the strains was around 7·1. The DNA G+C contents were 43·3 and 42·0 mol% for strains 18T and 61T, respectively. Strains 18T, 61T and 77 were most closely related to Desulfovibrio hydrothermalis (95·0–95·7 % 16S rRNA gene sequence similarity). Strains 18T and 77, exhibiting 99·9 % sequence similarity, represent a novel species for which the name Desulfovibrio frigidus sp. nov. is proposed. The type strain is strain 18T (=DSM 17176T=JCM 12924T). Strain 61T was closely related to strains 18T and 77 (97·6 and 97·5 % 16S rRNA gene sequence similarity), but on the basis of DNA–DNA hybridization strain 61T represents a novel species for which the name Desulfovibrio ferrireducens sp. nov. is proposed. The type strain is strain 61T (=DSM 16995T=JCM 12925T)

    Pathways of carbon oxidation in an Arctic fjord sediment (Svalbard) and isolation of psychrophilic and psychrotolerant Fe(III)-reducing bacteria

    No full text
    The main mineralization pathways were determined in permanently cold fjord sediment on the west coast of Svalbard. In whole core incubations, the total oxygen uptake rate was 4.2 ± 0.4 mmol m–2 d–1 and the sulfate reduction rate 2.6 ± 0.6 mmol m–2 d–1 at 0 to 20 cm depth. Sulfate reduction was the most important anaerobic mineralization process, accounting for 57% of anaerobic organic carbon oxidation in anoxic bag incubations of the top 5 cm of the sediment. The remaining 43% oxidation was attributed to microbial Fe(III) reduction. Both processes occurred concurrently in the uppermost 2 cm, and the Fe-reducing community appeared to be limited mainly by the availability of Fe(III). Below 2 cm, sulfate reduction was the dominant electron-accepting process. Calculations for the uppermost 10 cm of the sediment yielded the following contribution of the different respiratory pathways to total carbon oxidation: aerobic respiration 53%, sulfate reduction 34%, Fe(III) reduction 13%. In situ, the importance of Fe(III) reduction may vary through competition for substrate with oxygen- and nitrate-reducing bacteria in the surface sediment. Fe(III)-reducing bacteria belonging to the genera Desulfuromonas, Desulfuromusa, Shewanella and Desulfovibrio were isolated from enrichment cultures of 2 fjord sediments from Svalbard. Strains related to Desulfovibrio reduced Fe(III) without energy generation for growth. All isolates were psychrophilic or psychrotolerant and grew at –2°C, the freezing point of sea water, indicating adaptation to permanently cold temperatures. Besides Fe(III), the strains reduced other electron acceptors such as oxygen, manganese, elemental sulfur and sulfate
    corecore