255 research outputs found

    The Fetal Hypothalamus Has the Potential to Generate Cells with a Gonadotropin Releasing Hormone (GnRH) Phenotype

    Get PDF
    Neurospheres (NS) are colonies of neural stem and precursor cells capable of differentiating into the central nervous system (CNS) cell lineages upon appropriate culture conditions: neurons, and glial cells. NS were originally derived from the embryonic and adult mouse striatum subventricular zone. More recently, experimental evidence substantiated the isolation of NS from almost any region of the CNS, including the hypothalamus. Here we report a protocol that enables to generate large quantities of NS from both fetal and adult rat hypothalami. We found that either FGF-2 or EGF were capable of inducing NS formation from fetal hypothalamic cultures, but that only FGF-2 is effective in the adult cultures. The hypothalamic-derived NS are capable of differentiating into neurons and glial cells and most notably, as demonstrated by immunocytochemical detection with a specific anti-GnRH antibody, the fetal cultures contain cells that exhibit a GnRH phenotype upon differentiation. This in vitro model should be useful to study the molecular mechanisms involved in GnRH neuronal differentiation

    A novel PKC activating molecule promotes neuroblast differentiation and delivery of newborn neurons in brain injuries

    Get PDF
    Neural stem cells are activated within neurogenic niches in response to brain injuries. This results in the production of neuroblasts, which unsuccessfully attempt to migrate toward the damaged tissue. Injuries constitute a gliogenic/non-neurogenic niche generated by the presence of anti-neurogenic signals, which impair neuronal differentiation and migration. Kinases of the protein kinase C (PKC) family mediate the release of growth factors that participate in different steps of the neurogenic process, particularly, novel PKC isozymes facilitate the release of the neurogenic growth factor neuregulin. We have demonstrated herein that a plant derived diterpene, (EOF2; CAS number 2230806-06-9), with the capacity to activate PKC facilitates the release of neuregulin 1, and promotes neuroblasts differentiation and survival in cultures of subventricular zone (SVZ) isolated cells in a novel PKC dependent manner. Local infusion of this compound in mechanical cortical injuries induces neuroblast enrichment within the perilesional area, and noninvasive intranasal administration of EOF2 promotes migration of neuroblasts from the SVZ towards the injury, allowing their survival and differentiation into mature neurons, being some of them cholinergic and GABAergic. Our results elucidate the mechanism of EOF2 promoting neurogenesis in injuries and highlight the role of novel PKC isozymes as targets in brain injury regeneration

    Tripotential Differentiation of Adherently Expandable Neural Stem (NS) Cells

    Get PDF
    BACKGROUND: A recent study has shown that pure neural stem cells can be derived from embryonic stem (ES) cells and primary brain tissue. In the presence of fibroblast growth factor 2 (FGF2) and epidermal growth factor (EGF), this population can be continuously expanded in adherent conditions. In analogy to continuously self-renewing ES cells, these cells were termed ‘NS’ cells (Conti et al., PLoS Biol 3: e283, 2005). While NS cells have been shown to readily generate neurons and astrocytes, their differentiation into oligodendrocytes has remained enigmatic, raising concerns as to whether they truly represent tripotential neural stem cells. METHODOLOGY/PRINCIPAL FINDINGS: Here we provide evidence that NS cells are indeed tripotent. Upon proliferation with FGF2, platelet-derived growth factor (PDGF) and forskolin, followed by differentiation in the presence of thyroid hormone (T3) and ascorbic acid NS cells efficiently generate oligodendrocytes (∼20%) alongside astrocytes (∼40%) and neurons (∼10%). Mature oligodendroglial differentiation was confirmed by transplantation data showing that NS cell-derived oligodendrocytes ensheath host axons in the brain of myelin-deficient rats. CONCLUSIONS/SIGNIFICANCE: In addition to delineating NS cells as a potential donor source for myelin repair, our data strongly support the view that these adherently expandable cells represent bona fide tripotential neural stem cells

    Oct4-Induced Reprogramming Is Required for Adult Brain Neural Stem Cell Differentiation into Midbrain Dopaminergic Neurons

    Get PDF
    Neural stem cells (NSCs) lose their competency to generate region-specific neuronal populations at an early stage during embryonic brain development. Here we investigated whether epigenetic modifications can reverse the regional restriction of mouse adult brain subventricular zone (SVZ) NSCs. Using a variety of chemicals that interfere with DNA methylation and histone acetylation, we showed that such epigenetic modifications increased neuronal differentiation but did not enable specific regional patterning, such as midbrain dopaminergic (DA) neuron generation. Only after Oct-4 overexpression did adult NSCs acquire a pluripotent state that allowed differentiation into midbrain DA neurons. DA neurons derived from Oct4-reprogrammed NSCs improved behavioural motor deficits in a rat model of Parkinson's disease (PD) upon intrastriatal transplantation. Here we report for the first time the successful differentiation of SVZ adult NSCs into functional region-specific midbrain DA neurons, by means of Oct-4 induced pluripotency

    Role of BMP, FGF, Calcium Signaling, and Zic Proteins in Vertebrate Neuroectodermal Differentiation

    Get PDF
    More than a decade has passed since Zic family zinc finger proteins were discovered to be transcription factors controlling neuroectodermal differentiation (neural induction) in Xenopus laevis embryos. Although BMP-signal blocking has been shown to be a major upregulator of Zic genes in neuroectodermal differentiation, recent studies have revealed that FGF signaling and intracellular calcium elevation are also involved in regulating the expression of Zic genes. Different regulatory mechanisms have been found for the Zic1 and Zic3 genes, raising the possibility that functional synergism between them partly accounts for the integration of BMP-signal blocking and FGF signaling in neuroectodermal differentiation. Furthermore, mammalian Zic1 and Zic3 have been found to be neural-cell-fate-inducing and pluripotency-maintaining factors, respectively, leading us to the intriguing question of whether the mechanism underlying amphibian neuroectodermal differentiation is applicable to mammals. Comprehensive understanding of the Zic family genes is therefore essential for the study of the neuroectodermal differentiation and stem cell biology

    Differentiation of neurons from neural precursors generated in floating spheres from embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neural differentiation of embryonic stem (ES) cells is usually achieved by induction of ectoderm in embryoid bodies followed by the enrichment of neuronal progenitors using a variety of factors. Obtaining reproducible percentages of neural cells is difficult and the methods are time consuming.</p> <p>Results</p> <p>Neural progenitors were produced from murine ES cells by a combination of nonadherent conditions and serum starvation. Conversion to neural progenitors was accompanied by downregulation of <it>Oct4 </it>and <it>NANOG </it>and increased expression of <it>nestin</it>. ES cells containing a GFP gene under the control of the <it>Sox1 </it>regulatory regions became fluorescent upon differentiation to neural progenitors, and ES cells with a tau-GFP fusion protein became fluorescent upon further differentiation to neurons. Neurons produced from these cells upregulated mature neuronal markers, or differentiated to glial and oligodendrocyte fates. The neurons gave rise to action potentials that could be recorded after application of fixed currents.</p> <p>Conclusion</p> <p>Neural progenitors were produced from murine ES cells by a novel method that induced neuroectoderm cells by a combination of nonadherent conditions and serum starvation, in contrast to the embryoid body method in which neuroectoderm cells must be selected after formation of all three germ layers.</p

    Mature Peripheral RPE Cells Have an Intrinsic Capacity to Proliferate; A Potential Regulatory Mechanism for Age-Related Cell Loss

    Get PDF
    Mammalian peripheral retinal pigmented epithelium (RPE) cells proliferate throughout life, while central cells are senescent. It is thought that some peripheral cells migrate centrally to correct age-related central RPE loss.We ask whether this proliferative capacity is intrinsic to such cells and whether cells located centrally produce diffusible signals imposing senescence upon the former once migrated. We also ask whether there are regional differences in expression patterns of key genes involved in these features between the centre and the periphery in vivo and in vitro. Low density RPE cultures obtained from adult mice revealed significantly greater levels of proliferation when derived from peripheral compared to central tissue, but this significance declined with increasing culture density. Further, exposure to centrally conditioned media had no influence on proliferation in peripheral RPE cell cultures at the concentrations examined. Central cells expressed significantly higher levels of E-Cadherin revealing a tighter cell adhesion than in the peripheral regions. Fluorescence-labelled staining for E-Cadherin, F-actin and ZO-1 in vivo revealed different patterns with significantly increased expression on central RPE cells than those in the periphery or differences in junctional morphology. A range of other genes were investigated both in vivo and in vitro associated with RPE proliferation in order to identify gene expression differences between the centre and the periphery. Specifically, the cell cycle inhibitor p27(Kip1) was significantly elevated in central senescent regions in vivo and mTOR, associated with RPE cell senescence, was significantly elevated in the centre in comparison to the periphery.These data show that the proliferative capacity of peripheral RPE cells is intrinsic and cell-autonomous in adult mice. These differences between centre and periphery are reflected in distinct patterns in junctional markers. The regional proliferation differences may be inversely dependent to cell-cell contact

    Derivation of Human Differential Photoreceptor-like Cells from the Iris by Defined Combinations of CRX, RX and NEUROD

    Get PDF
    Examples of direct differentiation by defined transcription factors have been provided for beta-cells, cardiomyocytes and neurons. In the human visual system, there are four kinds of photoreceptors in the retina. Neural retina and iris-pigmented epithelium (IPE) share a common developmental origin, leading us to test whether human iris cells could differentiate to retinal neurons. We here define the transcription factor combinations that can determine human photoreceptor cell fate. Expression of rhodopsin, blue opsin and green/red opsin in induced photoreceptor cells were dependent on combinations of transcription factors: A combination of CRX and NEUROD induced rhodopsin and blue opsin, but did not induce green opsin; a combination of CRX and RX induced blue opsin and green/red opsin, but did not induce rhodopsin. Phototransduction-related genes as well as opsin genes were up-regulated in those cells. Functional analysis; i.e. patch clamp recordings, clearly revealed that generated photoreceptor cells, induced by CRX, RX and NEUROD, responded to light. The response was an inward current instead of the typical outward current. These data suggest that photosensitive photoreceptor cells can be generated by combinations of transcription factors. The combination of CRX and RX generate immature photoreceptors: and additional NEUROD promotes maturation. These findings contribute substantially to a major advance toward eventual cell-based therapy for retinal degenerative diseases

    Microfluidic Perfusion for Regulating Diffusible Signaling in Stem Cells

    Get PDF
    Background Autocrine & paracrine signaling are widespread both in vivo and in vitro, and are particularly important in embryonic stem cell (ESC) pluripotency and lineage commitment. Although autocrine signaling via fibroblast growth factor-4 (FGF4) is known to be required in mouse ESC (mESC) neuroectodermal specification, the question of whether FGF4 autocrine signaling is sufficient, or whether other soluble ligands are also involved in fate specification, is unknown. The spatially confined and closed-loop nature of diffusible signaling makes its experimental control challenging; current experimental approaches typically require prior knowledge of the factor/receptor in order to modulate the loop. A new approach explored in this work is to leverage transport phenomena at cellular resolution to downregulate overall diffusible signaling through the physical removal of cell-secreted ligands. Methodology/Principal Findings We develop a multiplex microfluidic platform to continuously remove cell-secreted (autocrine\paracrine) factors to downregulate diffusible signaling. By comparing cell growth and differentiation in side-by-side chambers with or without added cell-secreted factors, we isolate the effects of diffusible signaling from artifacts such as shear, nutrient depletion, and microsystem effects, and find that cell-secreted growth factor(s) are required during neuroectodermal specification. Then we induce FGF4 signaling in minimal chemically defined medium (N2B27) and inhibit FGF signaling in fully supplemented differentiation medium with cell-secreted factors to determine that the non-FGF cell-secreted factors are required to promote growth of differentiating mESCs. Conclusions/Significance Our results demonstrate for the first time that flow can downregulate autocrine\paracrine signaling and examine sufficiency of extracellular factors. We show that autocrine\paracrine signaling drives neuroectodermal commitment of mESCs through both FGF4-dependent and -independent pathways. Overall, by uncovering autocrine\paracrine processes previously hidden in conventional culture systems, our results establish microfluidic perfusion as a technique to study and manipulate diffusible signaling in cell systems.National Institutes of Health (U.S.) (NIH grant No. EB007278)Swiss National Science FoundationSwiss National Science Foundatio

    Large-Scale Assessment of the Zebrafish Embryo as a Possible Predictive Model in Toxicity Testing

    Get PDF
    Background: In the drug discovery pipeline, safety pharmacology is a major issue. The zebrafish has been proposed as a model that can bridge the gap in this field between cell assays (which are cost-effective, but low in data content) and rodent assays (which are high in data content, but less cost-efficient). However, zebrafish assays are only likely to be useful if they can be shown to have high predictive power. We examined this issue by assaying 60 water-soluble compounds representing a range of chemical classes and toxicological mechanisms. Methodology/Principal Findings: Over 20,000 wild-type zebrafish embryos (including controls) were cultured individually in defined buffer in 96-well plates. Embryos were exposed for a 96 hour period starting at 24 hours post fertilization. A logarithmic concentration series was used for range-finding, followed by a narrower geometric series for LC 50 determination. Zebrafish embryo LC50 (log mmol/L), and published data on rodent LD50 (log mmol/kg), were found to be strongly correlated (using Kendall’s rank correlation tau and Pearson’s product-moment correlation). The slope of the regression line for the full set of compounds was 0.73403. However, we found that the slope was strongly influenced by compound class. Thus, while most compounds had a similar toxicity level in both species, some compounds were markedly more toxic in zebrafish than in rodents, or vice versa. Conclusions: For the substances examined here, in aggregate, the zebrafish embryo model has good predictivity for toxicit
    corecore