1,429 research outputs found

    Measurements of Protein-Protein Interactions by Size Exclusion Chromatography

    Get PDF
    A method is presented for determining second virial coefficients B_2 of protein solutions from retention time measurements in size exclusion chromatography (SEC). We determine B_2 by analyzing the concentration dependance of the chromatographic partition coefficient. We show the ability of this method to track the evolution of B_2 from positive to negative values in lysozyme and bovine serum albumin solutions. Our SEC results agree quantitatively with data obtained by light scattering.Comment: 18 pages including 1 table and 5 figure

    Genetic murine models of spinal development and degeneration provide valuable insights into intervertebral disc pathobiology.

    Get PDF
    Disc degeneration and associated back and neck pain elicits a substantial burden on healthcare systems and the individuals affected, necessitating the development of novel therapeutic strategies. This goal can only be achieved by a better understanding of intervertebral disc development, homeostasis and pathogenesis. A number of genetic and in-bred murine models are reviewed to underscore the importance of the mouse as an animal model of choice for the assessment of intervertebral disc pathobiology. Appraisals of the differences between mouse and human musculoskeletal systems and proteoglycan structures are also included. A number of important target pathways and molecules have been identified, many of which are worthy of further examination, requiring that the activity of these be confirmed in large animal models and assessed in the context of therapeutic intervention

    Entanglement Sharing in the Two-Atom Tavis-Cummings Model

    Full text link
    Individual members of an ensemble of identical systems coupled to a common probe can become entangled with one another, even when they do not interact directly. We investigate how this type of multipartite entanglement is generated in the context of a system consisting of two two-level atoms resonantly coupled to a single mode of the electromagnetic field. The dynamical evolution is studied in terms of the entanglements in the different bipartite partitions of the system, as quantified by the I-tangle. We also propose a generalization of the so-called residual tangle that quantifies the inherent three-body correlations in our tripartite system. This enables us to completely characterize the phenomenon of entanglement sharing in the case of the two-atom Tavis-Cummings model, a system of both theoretical and experimental interest.Comment: 11 pages, 4 figures, submitted to PRA, v3 contains corrections to small error

    Lead Speciation in the Dusts Emitted from Non-Ferrous Metallurgy Processes

    Get PDF
    The paper presents results for the speciation analysis of lead in dusts derived from dedusting of technological gasses from metallurgical processes of non-ferrous metals with different elementary content, made in accordance with two equal sequential extractions. Analytical procedure A provided possibilities for determination of fraction of Pb2+, metallic lead and fraction containing mainly lead sulfides. The second procedure (procedure B) was sequential extraction in accordance with Tessier. The results obtained in accordance with procedure A indicate that, regardless of the dust origin, the dominant group of Pb compounds is composed of lead salts which are soluble under alkaline conditions or lead compounds that form plumbites in the reaction with NaOH

    Effects of in vitro and in vivo dietary supplementation with saponins on rumen fermentation with particular reference to volatile fatty acids, ammonia and methane

    Get PDF
    Résumé publié dans : Advance in Animal Biosciences, Janv. 2013; 4(2):577. doi:10.1017/S2040470013000125.International audienc

    Structural basis for cell surface patterning through NetrinG-NGL interactions

    Get PDF
    Brain wiring depends on cells making highly localized and selective connections through surface protein-protein interactions, including those between NetrinGs and NetrinG ligands (NGLs). The NetrinGs are members of the structurally uncharacterized netrin family. We present a comprehensive crystallographic analysis comprising NetrinG1-NGL1 and NetrinG2-NGL2 complexes, unliganded NetrinG2 and NGL3. Cognate NetrinG-NGL interactions depend on three specificity-conferring NetrinG loops, clasped tightly by matching NGL surfaces. We engineered these NGL surfaces to implant custom-made affinities for NetrinG1 and NetrinG2. In a cellular patterning assay, we demonstrate that NetrinG-binding selectivity can direct the sorting of a mixed population of NGLs into discrete cell surface subdomains. These results provide a molecular model for selectivity-based patterning in a neuronal recognition system, dysregulation of which is associated with severe neuropsychological disorders

    Theory and simulation of short-range models of globular protein solutions

    Full text link
    We report theoretical and simulation studies of phase coexistence in model globular protein solutions, based on short-range, central, pair potential representations of the interaction among macro-particles. After reviewing our previous investigations of hard-core Yukawa and generalised Lennard-Jones potentials, we report more recent results obtained within a DLVO-like description of lysozyme solutions in water and added salt. We show that a one-parameter fit of this model based on Static Light Scattering and Self-Interaction Chromatography data in the dilute protein regime, yields demixing and crystallization curves in good agreement with experimental protein-rich/protein-poor and solubility envelopes. The dependence of cloud and solubility points temperature of the model on the ionic strength is also investigated. Our findings highlight the minimal assumptions on the properties of the microscopic interaction sufficient for a satisfactory reproduction of the phase diagram topology of globular protein solutions.Comment: 17 pages, 8 figures, Proc. of Conference "Structural Arrest Transitions in Colloidal Systems with Short-Range Attractions", Messina (ITALY) 17-20 December 200

    CP debugging needs and tools

    Get PDF
    Conventional programming techniques are not well suited for solving many highly combinatorial industrial problems, like scheduling, decision making, resource allocation or planning. Constraint Programming (CP), an emerging software technology, offers an original approach allowing for efficient and flexible solving of complex problems, through combined implementation of various constraint solvers and expert heuristics. Its applications are increasingly elded in various industries
    corecore