70 research outputs found

    Frontiers in Pigment Cell and Melanoma Research

    Full text link
    We identify emerging frontiers in clinical and basic research of melanocyte biology and its associated biomedical disciplines. We describe challenges and opportunities in clinical and basic research of normal and diseased melanocytes that impact current approaches to research in melanoma and the dermatological sciences. We focus on four themes: (1) clinical melanoma research, (2) basic melanoma research, (3) clinical dermatology, and (4) basic pigment cell research, with the goal of outlining current highlights, challenges, and frontiers associated with pigmentation and melanocyte biology. Significantly, this document encapsulates important advances in melanocyte and melanoma research including emerging frontiers in melanoma immunotherapy, medical and surgical oncology, dermatology, vitiligo, albinism, genomics and systems biology, epidemiology, pigment biophysics and chemistry, and evolution

    Bayesian Orthogonal Least Squares (BOLS) algorithm for reverse engineering of gene regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A reverse engineering of gene regulatory network with large number of genes and limited number of experimental data points is a computationally challenging task. In particular, reverse engineering using linear systems is an underdetermined and ill conditioned problem, i.e. the amount of microarray data is limited and the solution is very sensitive to noise in the data. Therefore, the reverse engineering of gene regulatory networks with large number of genes and limited number of data points requires rigorous optimization algorithm.</p> <p>Results</p> <p>This study presents a novel algorithm for reverse engineering with linear systems. The proposed algorithm is a combination of the orthogonal least squares, second order derivative for network pruning, and Bayesian model comparison. In this study, the entire network is decomposed into a set of small networks that are defined as unit networks. The algorithm provides each unit network with P(D|H<sub>i</sub>), which is used as confidence level. The unit network with higher P(D|H<sub>i</sub>) has a higher confidence such that the unit network is correctly elucidated. Thus, the proposed algorithm is able to locate true positive interactions using P(D|H<sub>i</sub>), which is a unique property of the proposed algorithm.</p> <p>The algorithm is evaluated with synthetic and <it>Saccharomyces cerevisiae </it>expression data using the dynamic Bayesian network. With synthetic data, it is shown that the performance of the algorithm depends on the number of genes, noise level, and the number of data points. With Yeast expression data, it is shown that there is remarkable number of known physical or genetic events among all interactions elucidated by the proposed algorithm.</p> <p>The performance of the algorithm is compared with Sparse Bayesian Learning algorithm using both synthetic and <it>Saccharomyces cerevisiae </it>expression data sets. The comparison experiments show that the algorithm produces sparser solutions with less false positives than Sparse Bayesian Learning algorithm.</p> <p>Conclusion</p> <p>From our evaluation experiments, we draw the conclusion as follows: 1) Simulation results show that the algorithm can be used to elucidate gene regulatory networks using limited number of experimental data points. 2) Simulation results also show that the algorithm is able to handle the problem with noisy data. 3) The experiment with Yeast expression data shows that the proposed algorithm reliably elucidates known physical or genetic events. 4) The comparison experiments show that the algorithm more efficiently performs than Sparse Bayesian Learning algorithm with noisy and limited number of data.</p

    Recent insights in nanotechnology-based drugs and formulations designed for effective anti-cancer therapy

    Full text link

    Active N-Ras and B-Raf Inhibit Anoikis by Downregulating Bim Expression in Melanocytic Cells

    Get PDF
    B-Raf and N-Ras proteins are often activated in melanoma, yet their roles in producing inherent survival signals are not fully understood. In this study, we investigated how N-RASQ61K and B-RAFV600E contribute to melanoma's resistance to apoptosis induced by detachment from the extracellular matrix (anoikis). We found that expression of constitutively active N-RASQ61K and B-RAFV600E downregulated the proapoptotic Bim protein in an immortalized melanocyte cell line. Bim is one of the main proapoptotic mediators of anoikis. Western blot analysis showed that detachment increased Bim expression in melanocytes, and Annexin V staining indicated that detachment induced cell death significantly in melanocytes. Blocking Bim expression by using RNAi vectors or by expressing N-RASQ61K significantly inhibited anoikis in melanocytes. In summary, this report indicates that N-RASQ61K and B-RAFV600E contribute to melanoma's resistance to apoptosis in part by downregulating Bim expression, suggesting that Bim is a possible treatment target for overriding melanoma's inherent defenses against cell death
    corecore