201 research outputs found

    Time Dilation from Spectral Feature Age Measurements of Type Ia Supernovae

    Get PDF
    We have developed a quantitative, empirical method for estimating the age of Type Ia supernovae (SNe Ia) from a single spectral epoch. The technique examines the goodness of fit of spectral features as a function of the temporal evolution of a large database of SNe Ia spectral features. When a SN Ia spectrum with good signal-to-noise ratio over the rest frame range 3800 to 6800 A is available, the precision of a spectral feature age (SFA) is (1-sigma) ~ 1.4 days. SFA estimates are made for two spectral epochs of SN 1996bj (z=0.574) to measure the rate of aging at high redshift. In the 10.05 days which elapsed between spectral observations, SN 1996bj aged 3.35 ±\pm 3.2 days, consistent with the 6.38 days of aging expected in an expanding Universe and inconsistent with no time dilation at the 96.4 % confidence level. The precision to which individual features constrain the supernova age has implications for the source of inhomogeneities among SNe Ia.Comment: 14 pages (LaTex), 7 postscript figures to Appear in the Astronomical Journa

    Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant

    Get PDF
    We present observations of 10 type Ia supernovae (SNe Ia) between 0.16 < z < 0.62. With previous data from our High-Z Supernova Search Team, this expanded set of 16 high-redshift supernovae and 34 nearby supernovae are used to place constraints on the Hubble constant (H_0), the mass density (Omega_M), the cosmological constant (Omega_Lambda), the deceleration parameter (q_0), and the dynamical age of the Universe (t_0). The distances of the high-redshift SNe Ia are, on average, 10% to 15% farther than expected in a low mass density (Omega_M=0.2) Universe without a cosmological constant. Different light curve fitting methods, SN Ia subsamples, and prior constraints unanimously favor eternally expanding models with positive cosmological constant (i.e., Omega_Lambda > 0) and a current acceleration of the expansion (i.e., q_0 < 0). With no prior constraint on mass density other than Omega_M > 0, the spectroscopically confirmed SNe Ia are consistent with q_0 <0 at the 2.8 sigma and 3.9 sigma confidence levels, and with Omega_Lambda >0 at the 3.0 sigma and 4.0 sigma confidence levels, for two fitting methods respectively. Fixing a ``minimal'' mass density, Omega_M=0.2, results in the weakest detection, Omega_Lambda>0 at the 3.0 sigma confidence level. For a flat-Universe prior (Omega_M+Omega_Lambda=1), the spectroscopically confirmed SNe Ia require Omega_Lambda >0 at 7 sigma and 9 sigma level for the two fitting methods. A Universe closed by ordinary matter (i.e., Omega_M=1) is ruled out at the 7 sigma to 8 sigma level. We estimate the size of systematic errors, including evolution, extinction, sample selection bias, local flows, gravitational lensing, and sample contamination. Presently, none of these effects reconciles the data with Omega_Lambda=0 and q_0 > 0.Comment: 36 pages, 13 figures, 3 table files Accepted to the Astronomical Journa

    Gamma-ray and synchrotron emission from neutralino annihilation in the Large Magellanic Cloud

    Full text link
    We calculate the expected flux of gamma-ray and radio emission from the LMC due to neutralino annihilation. Using rotation curve data to probe the density profile and assuming a minimum disk, we describe the dark matter halo of the LMC using models predicted by N-body simulations. We consider a range of density profiles including the NFW profile, a modified NFW profile proposed by Hayashi et al.(2003) to account for the effects of tidal stripping, and an isothermal sphere with a core. We find that the gamma-ray flux expected from these models may be detectable by GLAST for a significant part of the neutralino parameter space. The prospects for existing and upcoming Atmospheric Cherenkov Telescopes are less optimistic, as unrealistically long exposures are required for detection. However, the effects of adiabatic compression due to the baryonic component may improve the chances for detection by ACTs. The maximum flux we predict is well below EGRET's measurements and thus EGRET does not constrain the parameter space. The expected synchrotron emission generally lies below the observed radio emission from the LMC in the frequency range of 19.7 to 8550 MHz. As long as <2x 10^-26 cm^3 s^-1 for a neutralino mass of 50 GeV, the observed radio emission is not primarily due to neutralinos and is consistent with the assumption that the main source is cosmic rays. We find that the predicted fluxes, obtained by integrating over the entire LMC, are not very strongly dependent on the inner slope of the halo profile, varying by less than an order of magnitude for the range of profiles we considered.Comment: 24 pages, 5 figures; detailed discussion of how the neutralino induced signals compare with the cosmic-ray induced ones was added. Main conclusions unchanged. Matches accepted version, to appear in Astroparticle Physic

    Constraints on Cosmological Models from Hubble Space Telescope Observations of High-z Supernovae

    Get PDF
    We have coordinated Hubble Space Telescope photometry with ground-based discovery for three supernovae: two SN Ia near z~0.5 (SN 1997ce, SN 1997cj) and a third event at z=0.97 (SN 1997ck). The superb spatial resolution of HST separates each supernova from its host galaxy and leads to good precision in the light curves. The HST data combined with ground-based photometry provide good temporal coverage. We use these light curves and relations between luminosity, light curve shape, and color calibrated from low-z samples to derive relative luminosity distances which are accurate to 10% at z~0.5 and 20% at z=1. The redshift-distance relation is used to place constraints on the global mean matter density, Omega_matter, and the normalized cosmological constant, Omega_Lambda. When the HST sample is combined with the distance to SN 1995K (z=0.48), analyzed by the same precepts, it suggests that matter alone is insufficient to produce a flat Universe. Specifically, for Omega_matter+Omega_Lambda=1, Omega_matter is less than 1 with >95% confidence, and our best estimate of Omega_matter is -0.1 +/- 0.5 if Omega_Lambda=0. Although the present result is based on a very small sample whose systematics remain to be explored, it demonstrates the power of HST measurements for high redshift supernovae.Comment: Submitted to ApJ Letters, 3 figures, 1 plate, additional tabl

    The Deep Lens Survey Transient Search I : Short Timescale and Astrometric Variability

    Full text link
    We report on the methodology and first results from the Deep Lens Survey transient search. We utilize image subtraction on survey data to yield all sources of optical variability down to 24th magnitude. Images are analyzed immediately after acquisition, at the telescope and in near-real time, to allow for followup in the case of time-critical events. All classes of transients are posted to the web upon detection. Our observing strategy allows sensitivity to variability over several decades in timescale. The DLS is the first survey to classify and report all types of photometric and astrometric variability detected, including solar system objects, variable stars, supernovae, and short timescale phenomena. Three unusual optical transient events were detected, flaring on thousand-second timescales. All three events were seen in the B passband, suggesting blue color indices for the phenomena. One event (OT 20020115) is determined to be from a flaring Galactic dwarf star of spectral type dM4. From the remaining two events, we find an overall rate of \eta = 1.4 events deg-2 day-1 on thousand-second timescales, with a 95% confidence limit of \eta < 4.3. One of these events (OT 20010326) originated from a compact precursor in the field of galaxy cluster Abell 1836, and its nature is uncertain. For the second (OT 20030305) we find strong evidence for an extended extragalactic host. A dearth of such events in the R passband yields an upper 95% confidence limit on short timescale astronomical variability between 19.5 < R < 23.4 of \eta_R < 5.2. We report also on our ensemble of astrometrically variable objects, as well as an example of photometric variability with an undetected precursor.Comment: 24 pages, 12 figures, 3 tables. Accepted for publication in ApJ. Variability data available at http://dls.bell-labs.com/transients.htm

    Cosmological Results from High-z Supernovae

    Full text link
    The High-z Supernova Search Team has discovered and observed 8 new supernovae in the redshift interval z=0.3-1.2. These independent observations, confirm the result of Riess et al. (1998a) and Perlmutter et al. (1999) that supernova luminosity distances imply an accelerating universe. More importantly, they extend the redshift range of consistently observed SN Ia to z~1, where the signature of cosmological effects has the opposite sign of some plausible systematic effects. Consequently, these measurements not only provide another quantitative confirmation of the importance of dark energy, but also constitute a powerful qualitative test for the cosmological origin of cosmic acceleration. We find a rate for SN Ia of 1.4+/-0.5E-04 h^3/Mpc^3/yr at a mean redshift of 0.5. We present distances and host extinctions for 230 SN Ia. These place the following constraints on cosmological quantities: if the equation of state parameter of the dark energy is w=-1, then H0 t0 = 0.96+/-0.04, and O_l - 1.4 O_m = 0.35+/-0.14. Including the constraint of a flat Universe, we find O_m = 0.28+/-0.05, independent of any large-scale structure measurements. Adopting a prior based on the 2dF redshift survey constraint on O_m and assuming a flat universe, we find that the equation of state parameter of the dark energy lies in the range -1.48-1, we obtain w<-0.73 at 95% confidence. These constraints are similar in precision and in value to recent results reported using the WMAP satellite, also in combination with the 2dF redshift survey.Comment: 50 pages, AAS LateX, 15 figures, 15 tables. Accepted for publication by Astrophysical Journa

    An Opportunity for Pharmacists to Help Improve Coordination and Continuity of Patient Health Care

    Get PDF
    Pharmacist workforce researchers are predicting a potential surplus of pharmacists in the United States that might result in pharmacists being available for engagement in new roles. The objective for this study was to describe consumer opinions regarding medication use, the health care system, and pharmacists to help identify new roles for pharmacists from the consumer perspective. Data were obtained from the 2015 and 2016 National Consumer Surveys on the Medication Experience and Pharmacist Roles. Out of the representative sample of 36,673 respondents living in the United States, 80% (29,426) submitted written comments at the end of the survey. Of these, 2178 were specifically about medicines, pharmacists or health and were relevant and usable for this study. Thematic analysis, content analysis, and computer-based text mining were used for identifying themes and coding comments. The findings showed that 66% of the comments about medication use and 82% about the health care system were negative. Regarding pharmacists, 73% of the comments were positive with many commenting about the value of the pharmacist for overcoming fears and for filling current gaps in their healthcare. We propose that these comments might be signals that pharmacists could help improve coordination and continuity for peoples’ healthcare and could help guide the development of new service offerings

    An Opportunity for Pharmacists to Help Improve Coordination and Continuity of Patient Health Care

    Get PDF
    Pharmacist workforce researchers are predicting a potential surplus of pharmacists in the United States that might result in pharmacists being available for engagement in new roles. The objective for this study was to describe consumer opinions regarding medication use, the health care system, and pharmacists to help identify new roles for pharmacists from the consumer perspective. Data were obtained from the 2015 and 2016 National Consumer Surveys on the Medication Experience and Pharmacist Roles. Out of the representative sample of 36,673 respondents living in the United States, 80% (29,426) submitted written comments at the end of the survey. Of these, 2178 were specifically about medicines, pharmacists or health and were relevant and usable for this study. Thematic analysis, content analysis, and computer-based text mining were used for identifying themes and coding comments. The findings showed that 66% of the comments about medication use and 82% about the health care system were negative. Regarding pharmacists, 73% of the comments were positive with many commenting about the value of the pharmacist for overcoming fears and for filling current gaps in their healthcare. We propose that these comments might be signals that pharmacists could help improve coordination and continuity for peoples’ healthcare and could help guide the development of new service offerings

    The Distance to SN 1999em from the Expanding Photosphere Method

    Get PDF
    We present optical and IR spectroscopy of the first two months of evolution of the Type II SN 1999em. We combine these data with high-quality optical/IR photometry beginning only three days after shock breakout, in order to study the performance of the ``Expanding Photosphere Method'' (EPM) in the determination of distances. With this purpose we develop a technique to measure accurate photospheric velocities by cross-correlating observed and model spectra. The application of this technique to SN 1999em shows that we can reach an average uncertainty of 11% in velocity from an individual spectrum. Our analysis shows that EPM is quite robust to the effects of dust. In particular, the distances derived from the VI filters change by only 7% when the adopted visual extinction in the host galaxy is varied by 0.45 mag. The superb time sampling of the BVIZJHK light-curves of SN 1999em permits us to study the internal consistency of EPM and test the dilution factors computed from atmosphere models for Type II plateau supernovae. We find that, in the first week since explosion, the EPM distances are up to 50% lower than the average, possibly due the presence of circumstellar material. Over the following 65 days, on the other hand, our tests lend strong credence to the atmosphere models, and confirm previous claims that EPM can produce consistent distances without having to craft specific models to each supernova. This is particularly true for the VI filters which yield distances with an internal consistency of 4%. From the whole set of BVIZJHK photometry, we obtain an average distance of 7.5+/-0.5 Mpc, where the quoted uncertainty (7%) is a conservative estimate of the internal precision of the method obtained from the analysis of the first 70 days of the supernova evolution.Comment: 68 pages, 15 tables, 22 figures, to appear in Ap

    Imaging and Demography of the Host Galaxies of High-Redshift Type Ia Supernovae

    Full text link
    We present the results of a study of the host galaxies of high redshift Type Ia supernovae (SNe Ia). We provide a catalog of 18 hosts of SNe Ia observed with the Hubble Space Telescope (HST) by the High-z Supernova Search Team (HZT), including images, scale-lengths, measurements of integrated (Hubble equivalent) BVRIZ photometry in bands where the galaxies are brighter than m ~ 25 mag, and galactocentric distances of the supernovae. We compare the residuals of SN Ia distance measurements from cosmological fits to measurable properties of the supernova host galaxies that might be expected to correlate with variable properties of the progenitor population, such as host galaxy color and position of the supernova. We find mostly null results; the current data are generally consistent with no correlations of the distance residuals with host galaxy properties in the redshift range 0.42 < z < 1.06. Although a subsample of SN hosts shows a formally significant (3-sigma) correlation between apparent V-R host color and distance residuals, the correlation is not consistent with the null results from other host colors probed by our largest samples. There is also evidence for the same correlations between SN Ia properties and host type at low redshift and high redshift. These similarities support the current practice of extrapolating properties of the nearby population to high redshifts pending more robust detections of any correlations between distance residuals from cosmological fits and host properties.Comment: 35 pages, 12 figures, 4 tables, accepted for publication in A
    • …
    corecore