1,008 research outputs found

    Update rules and interevent time distributions: Slow ordering vs. no ordering in the Voter Model

    Full text link
    We introduce a general methodology of update rules accounting for arbitrary interevent time distributions in simulations of interacting agents. In particular we consider update rules that depend on the state of the agent, so that the update becomes part of the dynamical model. As an illustration we consider the voter model in fully-connected, random and scale free networks with an update probability inversely proportional to the persistence, that is, the time since the last event. We find that in the thermodynamic limit, at variance with standard updates, the system orders slowly. The approach to the absorbing state is characterized by a power law decay of the density of interfaces, observing that the mean time to reach the absorbing state might be not well defined.Comment: 5pages, 4 figure

    Dynamics of link states in complex networks: The case of a majority rule

    Get PDF
    Motivated by the idea that some characteristics are specific to the relations between individuals and not of the individuals themselves, we study a prototype model for the dynamics of the states of the links in a fixed network of interacting units. Each link in the network can be in one of two equivalent states. A majority link-dynamics rule is implemented, so that in each dynamical step the state of a randomly chosen link is updated to the state of the majority of neighboring links. Nodes can be characterized by a link heterogeneity index, giving a measure of the likelihood of a node to have a link in one of the two states. We consider this link-dynamics model on fully connected networks, square lattices and Erd \"os-Renyi random networks. In each case we find and characterize a number of nontrivial asymptotic configurations, as well as some of the mechanisms leading to them and the time evolution of the link heterogeneity index distribution. For a fully connected network and random networks there is a broad distribution of possible asymptotic configurations. Most asymptotic configurations that result from link-dynamics have no counterpart under traditional node dynamics in the same topologies.Comment: 9 pages, 13 figure

    Divergent Time Scale in Axelrod Model Dynamics

    Get PDF
    We study the evolution of the Axelrod model for cultural diversity. We consider a simple version of the model in which each individual is characterized by two features, each of which can assume q possibilities. Within a mean-field description, we find a transition at a critical value q_c between an active state of diversity and a frozen state. For q just below q_c, the density of active links between interaction partners is non-monotonic in time and the asymptotic approach to the steady state is controlled by a time scale that diverges as (q-q_c)^{-1/2}.Comment: 4 pages, 5 figures, 2-column revtex4 forma

    Time scale competition leading to fragmentation and recombination transitions in the coevolution of network and states

    Get PDF
    We study the co-evolution of network structure and node states in a model of multiple state interacting agents. The system displays two transitions, network recombination and fragmentation, governed by time scales that emerge from the dynamics. The recombination transition separates a frozen configuration, composed by disconnected network components whose agents share the same state, from an active configuration, with a fraction of links that are continuously being rewired. The nature of this transition is explained analytically as the maximum of a characteristic time. The fragmentation transition, that appears between two absorbing frozen phases, is an anomalous order-disorder transition, governed by a crossover between the time scales that control the structure and state dynamics.Comment: 5 pages, 5 figures, figures 2 and 4 changed, tile changed, to be published in PR

    Information feedback and mass media effects in cultural dynamics

    Get PDF
    We study the effects of different forms of information feedback associated with mass media on an agent-agent based model of the dynamics of cultural dissemination. In addition to some processes previously considered, we also examine a model of local mass media influence in cultural dynamics. Two mechanisms of information feedback are investigated: (i) direct mass media influence, where local or global mass media act as an additional element in the network of interactions of each agent, and (ii) indirect mass media influence, where global media acts as a filter of the influence of the existing network of interactions of each agent. Our results generalize previous findings showing that cultural diversity builds-up by increasing the strength of the mass media influence. We find that this occurs independently of the mechanisms of action (direct or indirect) of the mass media message. However, through an analysis of the full range of parameters measuring cultural diversity, we establish that the enhancement of cultural diversity produced by interaction with mass media only occurs for strong enough mass media messages. In comparison with previous studies a main different result is that weak mass media messages, in combination with agent-agent interaction, are efficient in producing cultural homogeneity. Moreover, the homogenizing effect of weak mass media messages are more efficient for direct local mass media messages than for global mass media messages or indirect global mass media influences.Comment: 20n pages, 10 figure

    Resonance induced by repulsive interactions in a model of globally-coupled bistable systems

    Get PDF
    We show the existence of a competition-induced resonance effect for a generic globally coupled bistable system. In particular, we demonstrate that the response of the macroscopic variable to an external signal is optimal for a particular proportion of repulsive links. Furthermore, we show that a resonance also occurs for other system parameters, like the coupling strength and the number of elements. We relate this resonance to the appearance of a multistable region, and we predict the location of the resonance peaks, by a simple spectral analysis of the Laplacian matrix

    Nonlinear oscillator with parametric colored noise: some analytical results

    Full text link
    The asymptotic behavior of a nonlinear oscillator subject to a multiplicative Ornstein-Uhlenbeck noise is investigated. When the dynamics is expressed in terms of energy-angle coordinates, it is observed that the angle is a fast variable as compared to the energy. Thus, an effective stochastic dynamics for the energy can be derived if the angular variable is averaged out. However, the standard elimination procedure, performed earlier for a Gaussian white noise, fails when the noise is colored because of correlations between the noise and the fast angular variable. We develop here a specific averaging scheme that retains these correlations. This allows us to calculate the probability distribution function (P.D.F.) of the system and to derive the behavior of physical observables in the long time limit

    Conservation laws for the voter model in complex networks

    Get PDF
    We consider the voter model dynamics in random networks with an arbitrary distribution of the degree of the nodes. We find that for the usual node-update dynamics the average magnetization is not conserved, while an average magnetization weighted by the degree of the node is conserved. However, for a link-update dynamics the average magnetization is still conserved. For the particular case of a Barabasi-Albert scale-free network the voter model dynamics leads to a partially ordered metastable state with a finite size survival time. This characteristic time scales linearly with system size only when the updating rule respects the conservation law of the average magnetization. This scaling identifies a universal or generic property of the voter model dynamics associated with the conservation law of the magnetization.Comment: 5 pages, 4 figures; for related material please visit http://www.imedea.uib.e

    Importance of single nodes in dynamics on networks

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure

    Importance of single nodes in dynamics on networks

    Get PDF
    Identifying key players in collective dynamics remains a challenge in several research fields, from the efficient dissemination of ideas to drug target discovery in biomedical problems. The difficulty lies at several levels: how to single out the role of individual elements in such intermingled systems, or which is the best way to quantify their importance. Centrality measures describe a node's importance by its position in a network. The key issue obviated is that the contribution of a node to the collective behavior is not uniquely determined by the structure of the system but it is a result of the interplay between dynamics and network structure
    corecore