91 research outputs found

    Laser beams with conical refraction patterns

    Get PDF
    Laser beams with cone-refracted output from the plane mirror is demonstrated for the first time in lasers based on intracavity conical refraction (CR) phenomenon. Transverse profile of such lasers comprises a crescent ring of CR-like distribution, where any opposite points are of orthogonal linear polarizations. We confirm the existence of such mode of CR lasers by two observations. First, cascaded CR in reflection geometry has been demonstrated for first time and it provides experimental prove that a light beam passed along optic axis of a biaxial crystal, reflected back from a plane mirror and passed again through the crystal is restored. Second, CR cavity mode with CR-like pattern through the plane mirror is experimentally and theoretically demonstrated for the first time

    QCL active region overheat in pulsed mode: effects of non-equilibrium heat dissipation on laser performance

    Full text link
    Quantum cascade lasers are of high interest in the scientific community due to unique applications utilizing the emission in mid-IR range. The possible designs of QCL are quite limited and require careful engineering to overcome some crucial disadvantages. One of them is an active region (ARn) overheat, that significantly affects the laser characteristics in the pulsed operation mode. In this work we consider the effects related to the non-equilibrium temperature distribution, when thermal resistance formalism is irrelevant. We employ the heat equation and discuss the possible limitations and structural features stemming from the chemical composition of the AR. We show that the presence of alloys in the ARn structure fundamentally limits the heat dissipation in pulsed and CW regimes due to their low thermal conductivity. Also the QCL post-growths affects the thermal properties of a device only in (near)CW mode while it is absolutely invaluable in the pulsed mod

    Di-chromatic InGaN based color tuneable monolithic LED with high color rendering index

    Get PDF
    We demonstrate a phosphor free, dichromatic GaN-based monolithic white LED with vertically stacked green and blue emitting multiple quantum wells. The optimal thickness of GaN barrier layer between green and blue quantum wells used is 8 nm. This device can be tuned over a wide range of correlated color temperature (CCT) to achieve warm white (CCT = 3600 K) to cool white (CCT = 13,000 K) emission by current modulation from 2.3 A/cm2 to 12.9 A/cm2. It is also demonstrated for the first time that a color rendering index (CRI) as high as 67 can be achieved with such a dichromatic source. The observed CCT and CRI tunability is associated with the spectral power evolution due to the pumping-induced carrier redistribution

    Radioactive source strength effect on gamma radiation monitoring with a NaI (Tl) scintillation detector

    Get PDF
    The accurate monitoring of gamma radiation doses in the environment has become essential due to its effect on human health. In this study, the temperature dependence of NaI (Tl) scintillation detectors based on the daily/annually measured dose rate in the environment as well as the importance of selecting the appropriate radioactive source strength when calibrating NaI (Tl) detectors for gamma radiation monitoring were investigated. The temperature correction coefficients discovered during the calibration of the BDKG-03 detector by Atomtex were verified, and whether the time duration of the measurement interval has an effect on readings of gamma radiation was also investigated in the city of Tomsk. NaI (Tl) scintillation detectors were used to monitor the gamma background radiation in the environment. The detectors were calibrated with both high and low radioactive sources to obtain a temperature correction coefficient in order to stabilize the influence of temperature change on the detector at different time intervals. This was used to study the correlation between the daily and annual dose rates of low gamma background radiation. The results showed that there was a shift in the spectrum of the daily and annual dose rates calculated using the algorithm obtained when the detector was calibrated with a highly radioactive source to the position of the constant coefficient for low-level dose. However, the ones obtained when the detector was calibrated with a low radioactive source and that of the constant coefficient for a low-level dose overlapped each other. This demonstrated that the type of radioactive source used in detector calibration during manufacture has an effect on the temperature correction coefficient, which in turn has an effect on the accuracy of the ambient dose rate when used to monitor gamma radiation. The duration of the time interval for measurement was found to be very important since it has an effect on dose rate readings

    Conical refraction lasing in a Nd:YVO4 laser with a conerefringent KGW element

    Get PDF
    A conical refraction (CR) laser based on a separate gain medium (Nd:YVO4) and an intracavity CR element (KGW) was demonstrated. The decoupling of the gain and CR media enabled the laser to produce a well-behaved CR laser beam with excellent quality, while reducing the complexity of the pumping scheme. The proposed laser setup has the potential for power scaling using the efficient diode pumping approach and the properties of the generated CR beam are independent from the laser gain medium

    Polarization lidars with conical scanning for retrieving the microphysical characteristics of cirrus clouds

    Get PDF
    The paper presents the first results of observations of cirrus clouds by polarization lidars with conical scanning, which were developed in Hefei (China) and in Tomsk (Russia). The light scattering matrix of ice crystal particles of cirrus clouds has been calculated for the first by the authors within the framework of the physical optics approximations in the case of conical scanning lidar. It is found that in this case the Mueller matrix consists of ten non-zero elements, four of which are small and can’t be applied to interpret the azimuthal distribution of particle orientation. All the diagonal elements have a strong azimuthal dependence. Among the off-diagonal elements only one element M34 carries additional information for interpreting the azimuthal distribution. © (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only

    AlGaInP red-emitting light emitting diode under extremely high pulsed pumping

    Get PDF
    Efficiency of commercial 620 nm InAlGaP Golden Dragon-cased high-power LEDs has been studied under extremely high pump current density up to 4.5 kA/cm2 and pulse duration from microsecond down to sub-nanosecond range. No efficiency decrease and negligible red shift of the emission wavelength is observed in the whole range of drive currents at nanosecond-range pulses with duty cycles well below 1%. Analysis of the pulse-duration dependence of the LED efficiency and emission spectrum suggests the active region overheating to be the major mechanism of the LED efficiency reduction at higher pumping, dominating over the electron overflow and Auger recombination

    Temperature effects on optical properties and efficiency of red AlGaInP-based light emitting diodes under high current pulse pumping

    Get PDF
    In this paper, current-dependent emission spectra and efficiency measured on the same AlGaInP red light-emitting diode (LED) pumped with the current pulses of very different durations are recorded. This enabled for the first time distinguishing between high-carrier concentration and self-heating effects on the efficiency decline at high current magnitudes. The electron leakage to the p-side of the LED structure, which is the major mechanism of the efficiency reduction, is found to rise substantially when the device self-heating starts to develop. As a result, in comparison to continuous-wave excitation, driving the LED with sub-microsecond current pulses allows suppressing the device self-heating and, eventually, increasing the operating current by an order of magnitude without noticeable efficiency losses. Based on the reduced ABC-model, neglecting Auger recombination, the light extraction efficiency, injection efficiency, and internal quantum efficiency of the LED are estimated, suggesting light extraction to be the most critical factor for the overall efficiency of the LED. The coupled spectral/power LED characterization using the variable-duration current pulse pumping is found to be an effective approach for analyzing mechanisms of the device operation

    Meissner-London currents in superconductors with rectangular cross section

    Full text link
    Exact analytic solutions are presented for the magnetic moment and screening currents in the Meissner state of superconductor strips with rectangular cross section in a perpendicular magnetic field and/or with transport current. The extension to finite London penetration is achieved by an elegant numerical method which works also for disks. The surface current in the specimen corners diverges as l^(-1/3) where l is the distance from the corner. This enhancement reduces the barrier for vortex penetration and should increase the nonlinear Meissner effect in d-wave superconductors
    corecore