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ABSTRACT 

A conical refraction (CR) laser based on a separate gain medium (Nd:YVO4) and an intracavity CR element (KGW) 
was demonstrated. The decoupling of the gain and CR media enabled the laser to produce a well-behaved CR laser 
beam with excellent quality, while reducing the complexity of the pumping scheme. The proposed laser setup has 
the potential for power scaling using the efficient diode pumping approach and the properties of the generated CR 
beam are independent from the laser gain medium. 

 

1.  INTRODUCTION 

The well-known conical refraction (CR) phenomenon has attracted attention in recent years due to its fundamental 
properties and practical applications in, e.g., optical trapping, microscopy and optical communications [1]. In 
principle, a biaxial crystal cut along its optical axis transforms a beam with Gaussian intensity distribution into a pair 
of bright concentric rings separated by a dark Poggendorff ring in the focal (Lloyd) plane [1]. Another unique 
characteristic of the conically refracted beam is that any two diametrical points on the ring have orthogonal 
polarizations. In addition, the CR beam evolves symmetrically about the Lloyd plane into a bright central (Raman) 
spot in the far field. The generation of CR beams using an external laser beam (also called “passive CR”) have been 
demonstrated and studied in numerous works [1-8]. However, “active” CR beams delivered directly from the laser 
oscillators have only been recently demonstrated where the laser medium also acts as a CR element [9-14]. Due to 
the complex relationship between the classical effect of CR, anisotropic laser gain as well as the resonant conditions 
of the optical cavity, the properties of “active” laser CR are still not well known. For example, in some cases a 
Gaussian beam was produced after the plane output mirror, while in the other experiments the output beam had a 
crescent-like shape without a clear double-ring pattern (i.e. without a dark Poggendorff ring).  

In this work we demonstrated a simple solution to reduce the complexity of the “active” CR by decoupling the gain 
and CR media or conerefringent element (CRE). The advantages of the proposed laser are that an optimal laser gain 
and CR conditions can be achieved more independently and the laser properties are not limited by the properties of 
the CR element. In addition, a separate laser gain medium allows for power scaling. Our laser setup used a 
Nd:YVO4 crystal as the gain medium and KGW crystal as the intracavity CR element. The laser produced images of 
the CR laser beams of unprecedented quality with output power up to 220 mW with 500 mW of pump power. In 
experiments one of the main CR laser beam forming conditions was identified and experimentally confirmed. 
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2.  EXPERIMENTAL SETUP 

The laser used a 3 mm-long a-cut 1.1 at.% Nd:YVO4 laser crystal as the gain medium in a five-mirror laser cavity, 
as shown in figure 1. The highly polarized laser emission and efficient laser operation in the continuous-wave (CW) 
and pulsed regimes are characteristics of this vanadate crystal [15-19].  The crystal had anti-reflective (AR) coatings 
for the pump wavelength (~808 nm) and laser wavelength (1064 nm) on both surfaces. The laser crystal was 
pumped by a home-built Ti:sapphire laser with oscillating wavelength at 808.8 nm which was tuned by means of a 
0.5 mm birefringent filter (see figure 1). This wavelength corresponds to the maximum absorption of the Nd:YVO4 
crystal. The Ti:sapphire laser could deliver up to 500 mW of output power and the beam was focused into a spot size 
of around 35 µm in the Nd:YVO4 crystal. The R3 mirror provided the required focusing of the laser mode into the 
CRE (see figure 1). The CRE was an 18 mm-long AR-coated KGW crystal (KGd(WO4)2) cut along its optical axis. 
The KGW crystal is a popular choice for the active/passive CR experiments [9,11–14,20–23]. Strong anisotropy of 
optical and physical properties as well as high optical quality are features of the KGW crystal which make it a 
suitable host for rare-earth metal ion based lasers in the CW and pulsed regimes [24-33].  

 

 

Figure 1. (a) Schematic of the laser cavity. The output of the Ti:sapphire laser was used as the pump for the Nd:YVO4 laser. For 
CR Nd:YVO4 laser cavity R1 = R2 = −100 mm, R3 = −150 mm. BRF: birefringent filter, OC: output coupler, HR: highly 
reflective mirror, CRE: conerefringent element. (b) Schematic of the CRE (KGW crystal), OA: optical axis. 
 
 

3.  RESULTS AND DISCUSSION 

The Nd:YVO4 laser was initially operated without the CRE in the cavity and generated a typical beam with 
Gaussian intensity distribution and horizontal polarization at 1064.35 nm. By using a 5% output coupling, the laser 
delivered more than 300 mW of output power for 500 mW of pump power. In order to operate the laser in the CR 
regime, the KGW crystal (i.e. CRE) was inserted in the R3-OC arm of the cavity with its Nm-axis oriented 
horizontally (see figure 1). The R3-OC arm of the cavity was correspondingly adjusted (i.e. increased) in order to 
retain the stability of the laser. The output of the CR laser (i.e. a laser with an intracavity CRE) was monitored using 
an imaging lens (f=60 mm) and a CCD camera. For large misalignment of the CRE optical axis (OA) and cavity 
mode axis, a double refraction of the laser output with two distinct bright spots was observed. By further adjustment 
of the CRE, the laser beam approached the ring-shaped pattern with increased output power. Fine alignment of the 
CRE was required to bring the OA of the CRE into a parallel position with the cavity axis in order to observe a fully 
resolved CR pattern with a dark Poggendorff ring (see figure 2 (a)). The position of the image plane (i.e. Lloyd 
image plane) was estimated to be around 3-5 mm outside of the output coupler. For this orientation of the CRE (i.e. 
horizontal Nm-axis) the node of the CR pattern was at the bottom of the beam. In addition, the generated CR laser 
beam exhibited evolution pattern along its propagation axis similar to the well-known free-space CR beam, i.e. from 
the Lloyd image plane towards the Raman spot, as shown in figure 2(b)-(e). In this regime of operation, the CR laser 
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could deliver up to 220 mW of output power for maximum pump power of 500 mW. To further confirm the CR 
nature of the obtained radiation, the polarization distribution along the CR beam ring pattern was determined by 
using a rotating polarizer. In this case the polarization rejected by the polarizer appeared as an additional dark spot 
on the image of beam intensity profile (see figure 2 (f)-(i)). As can be seen, the diametrically opposite points along 
the beam possessed orthogonal polarization states.  
 
 

 
 

Figure 2. The CR laser beam at the Lloyd image plane and its free-space evolution for the CRE with horizontal orientation of the 
Nm-axis (a)-(e). The local polarization states along the CR beam were determined by polarizer and are marked by arrows in (f)-
(i). The numbers in the first row show the calculated positions of the image planes from the outer surface of the output coupler. 
The far-field beam in (e) was imaged without an imaging lens.  
 
The generation of the CR laser beam was also investigated for orthogonal orientation of the CRE (i.e. for vertical 
Nm-axis). In this case the node of the CR beam was positioned on the side of the CR ring and the beam exhibited 
similar evolution pattern along its propagation axis (see figure 3 (a)-(e)). In addition, the polarization state 
distribution along the beam was rotated by 90 degrees (see figure 3 (f)-(i)).  
 
 

 
 

Figure 3. The CR laser beam at the Lloyd image plane and its free-space evolution for the CRE with vertical orientation of the 
Nm-axis (a)-(e). The polarization states along the CR beam were determined by polarizer and are marked by arrows in (f)-(i). The 
numbers in show the calculated positions of the image planes from the outer surface of the output coupler. The far-field beam in 
(e) was imaged without an imaging lens. 

 
In order to compare the performance of the CR laser with an equivalent Gaussian laser (i.e. a laser without an 
intracavity CRE), a 20 mm-long AR-coated Ng-cut (non-CR) KGW crystal was inserted instead of the CRE in the 
cavity. The laser produced an output beam with intensity distribution of a fundamental Gaussian mode. The laser 
delivered the maximum output power of 287 mW for 500 mW of incident pump power with the slope efficiency of 
58%, while the CR laser could deliver the maximum output power of 220 mW with the slope efficiency of 44%. The 
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In order to investigate the laser mode evolution in the CR Nd:YVO4 laser cavity, the laser mode leakage from the 
HR mirror (i.e. opposite arm of the cavity) was also imaged and compared to the equivalent laser mode in the typical 
(i.e. Gaussian mode) regime of operation (see figure 6). As can be seen, the laser mode in the CR regime exhibited 
similar distribution to the far-field CR beam (i.e. Raman spot) with concentric intensity background, which was 
absent in case of the Gaussian laser mode. Therefore, different spatial profile of the resonating modes in the CR and 
Gaussian lasers could cause the reduction in laser output power in CR regime (see figure 4) since the overlap 
between the pump beam and the laser mode in the Nd:YVO4 crystal was affected [34].  
 

 
 

Figure 6. Intensity profiles of the laser output beams from the HR arms for the (a) CR and (b) Gaussian lasers. 
 

4.  CONCLUSIONS 

In summary, a CR laser with separate laser and intracavity CR media was demonstrated. The separation of the laser 
gain medium and the CRE in the laser cavity made it possible to conveniently transform a laser with Gaussian 
output beam into a CR laser beam with well-characterized CR ring pattern. By using an a-cut Nd:YVO4 crystal as 
the laser medium and a KGW crystal with cut along its optical axis as the CRE, the laser generated a well-resolved 
CR beam with maximum output power of 220 mW for pump power of 500 mW. It was also shown that the focusing 
condition of the laser mode on the CRE considerably affected the CR beam pattern and for a tighter focusing of the 
laser mode into the CRE, a thinner Poggendorff ring could be generated. In addition, it was shown that the laser 
mode in the CR regime exhibited different transformation by observing the laser mode leakage from the opposite 
cavity arm. This could be responsible for the reduction of the laser output power in the CR regime when compared 
with the Gaussian beam laser. In general, the demonstrated CR laser has the potential of power scaling and more 
flexible design parameters (e.g. wavelength or gain medium) [35-41] due to the separation of the laser medium and 
the CRE. Extension to the efficient diode-pumped Yb-ion lasers is particularly interesting although this will require 
taking into account re-absorption losses in the gain medium [42]. We believe that the results of this work can be 
used to further develop the theoretical work and experiments on active CR lasers. 
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