3,064 research outputs found

    Quantum MERA Channels

    Full text link
    Tensor networks representations of many-body quantum systems can be described in terms of quantum channels. We focus on channels associated with the Multi-scale Entanglement Renormalization Ansatz (MERA) tensor network that has been recently introduced to efficiently describe critical systems. Our approach allows us to compute the MERA correspondent to the thermodynamic limit of a critical system introducing a transfer matrix formalism, and to relate the system critical exponents to the convergence rates of the associated channels.Comment: 4 pages, 2 figure

    Electron-electron interactions in decoupled graphene layers

    Full text link
    Multi-layer graphene on the carbon face of silicon carbide is an intriguing electronic system which typically consists of a stack of ten or more layers. Rotational stacking faults in this system dramatically reduce inter-layer coherence. In this article we report on the influence of inter-layer interactions, which remain strong even when coherence is negligible, on the Fermi liquid properties of charged graphene layers. We find that inter-layer interactions increase the magnitudes of correlation energies and decrease quasiparticle velocities, even when remote-layer carrier densities are small, and that they lessen the influence of exchange and correlation on the distribution of carriers across layers.Comment: 8 pages, 4 figures, submitte

    Superconducting Fluctuation Corrections to the Thermal Current in Granular Metals

    Full text link
    The first-order superconducting fluctuation corrections to the thermal conductivity of a granular metal are calculated. A suppression of thermal conductivity proportional to Tc/(T−Tc)T_c/(T-T_c) is observed in a region not too close to the critical temperature TcT_c. As T≃TcT\simeq T_c, a saturation of the correction is found, and its sign depends on the ratio between the barrier transparency and the critical temperature. In both regimes, the Wiedemann-Franz law is violated.Comment: 9 pages, 7 figures. Replaced with published version. Important change

    Theory of integer quantum Hall polaritons in graphene

    Get PDF
    We present a theory of the cavity quantum electrodynamics of the graphene cyclotron resonance. By employing a canonical transformation, we derive an effective Hamiltonian for the system comprised of two neighboring Landau levels dressed by the cavity electromagnetic field (integer quantum Hall polaritons). This generalized Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic field and respects gauge invariance, is then used to calculate thermodynamic properties of the quantum Hall polariton system. Finally, we demonstrate that the generalized Dicke description fails when the graphene sheet is heavily doped, i.e. when the Landau level spectrum of 2D massless Dirac fermions is approximately harmonic. In this case we `integrate out' the Landau levels in valence band and obtain an effective Hamiltonian for the entire stack of Landau levels in conduction band, as dressed by strong light-matter interactions.Comment: 20 pages, 7 figure

    Robust optimal quantum gates for Josephson charge qubits

    Get PDF
    Quantum optimal control theory allows to design accurate quantum gates. We employ it to design high-fidelity two-bit gates for Josephson charge qubits in the presence of both leakage and noise. Our protocol considerably increases the fidelity of the gate and, more important, it is quite robust in the disruptive presence of 1/f noise. The improvement in the gate performances discussed in this work (errors of the order of 10^{-3}-10^{-4} in realistic cases) allows to cross the fault tolerance threshold.Comment: 4 pages, 4 figure

    4e-condensation in a fully frustrated Josephson junction diamond chain

    Full text link
    Fully frustrated one-dimensional diamond Josephson chains have been shown [B. Dou\c{c}ot and J. Vidal, Phys. Rev. Lett. {\bf 88}, 227005 (2002)] to posses a remarkable property: The superfluid phase occurs through the condensation of pairs of Cooper pairs. By means of Monte Carlo simulations we analyze quantitatively the Insulator to 4e4e-Superfluid transition. We determine the location of the critical point and discuss the behaviour of the phase-phase correlators. For comparison we also present the case of a diamond chain at zero and 1/3 frustration where the standard 2e2e-condensation is observed.Comment: 5 pages, 7 figure

    Dynamics of entanglement in quantum computers with imperfections

    Full text link
    The dynamics of the pairwise entanglement in a qubit lattice in the presence of static imperfections exhibits different regimes. We show that there is a transition from a perturbative region, where the entanglement is stable against imperfections, to the ergodic regime, in which a pair of qubits becomes entangled with the rest of the lattice and the pairwise entanglement drops to zero. The transition is almost independent of the size of the quantum computer. We consider both the case of an initial maximally entangled and separable state. In this last case there is a broad crossover region in which the computer imperfections can be used to create a significant amount of pairwise entanglement.Comment: 4 pages, 4 figure

    Phase Diagram of the Bose-Hubbard Model with T_3 symmetry

    Full text link
    In this paper we study the quantum phase transition between the insulating and the globally coherent superfluid phases in the Bose-Hubbard model with T_3 structure, the "dice lattice". Even in the absence of any frustration the superfluid phase is characterized by modulation of the order parameter on the different sublattices of the T_3 structure. The zero-temperature critical point as a function of a magnetic field shows the characteristic "butterfly" form. At fully frustration the superfluid region is strongly suppressed. In addition, due to the existence of the Aharonov-Bohm cages at f=1/2, we find evidence for the existence of an intermediate insulating phase characterized by a zero superfluid stiffness but finite compressibility. In this intermediate phase bosons are localized due to the external frustration and the topology of the T_3 lattice. We name this new phase the Aharonov-Bohm (AB) insulator. In the presence of charge frustration the phase diagram acquires the typical lobe-structure. The form and hierarchy of the Mott insulating states with fractional fillings, is dictated by the particular topology of the T_3 lattice. The results presented in this paper were obtained by a variety of analytical methods: mean-field and variational techniques to approach the phase boundary from the superconducting side, and a strongly coupled expansion appropriate for the Mott insulating region. In addition we performed Quantum Monte Carlo simulations of the corresponding (2+1)D XY model to corroborate the analytical calculations with a more accurate quantitative analysis. We finally discuss experimental realization of the T_3 lattice both with optical lattices and with Josephson junction arrays.Comment: 16 pages, 17 figure

    Continuous measurements of two qubits

    Full text link
    We develop a theory of coherent quantum oscillations in two, in general interacting, qubits measured continuously by a mesoscopic detector with arbitrary non-linearity and discuss an example of SQUID magnetometer that can operate as such a detector. Calculated spectra of the detector output show that the detector non-linearity should lead to mixing of the oscillations of the two qubits. For non-interacting qubits oscillating with frequencies Ω1\Omega_1 and Ω2\Omega_2, the mixing manifests itself as spectral peaks at the combination frequencies Ω1±Ω2\Omega_1\pm \Omega_2. Additional nonlinearity introduced by the qubit-qubit interaction shifts all the frequencies. In particular, for identical qubits, the interaction splits coherent superposition of the single-qubit peaks at Ω1=Ω2\Omega_1=\Omega_2. Quantum mechanics of the measurement imposes limitations on the height of the spectral peaks.Comment: 14 pages, 6 figure
    • …
    corecore