research

Continuous measurements of two qubits

Abstract

We develop a theory of coherent quantum oscillations in two, in general interacting, qubits measured continuously by a mesoscopic detector with arbitrary non-linearity and discuss an example of SQUID magnetometer that can operate as such a detector. Calculated spectra of the detector output show that the detector non-linearity should lead to mixing of the oscillations of the two qubits. For non-interacting qubits oscillating with frequencies Ω1\Omega_1 and Ω2\Omega_2, the mixing manifests itself as spectral peaks at the combination frequencies Ω1±Ω2\Omega_1\pm \Omega_2. Additional nonlinearity introduced by the qubit-qubit interaction shifts all the frequencies. In particular, for identical qubits, the interaction splits coherent superposition of the single-qubit peaks at Ω1=Ω2\Omega_1=\Omega_2. Quantum mechanics of the measurement imposes limitations on the height of the spectral peaks.Comment: 14 pages, 6 figure

    Similar works

    Full text

    thumbnail-image