38 research outputs found

    RT-SHIV subpopulation dynamics in infected macaques during anti-HIV therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To study the dynamics of wild-type and drug-resistant HIV-1 RT variants, we developed a methodology that follows the fates of individual genomes over time within the viral quasispecies. Single genome sequences were obtained from 3 pigtail macaques infected with a recombinant simian immunodeficiency virus containing the RT coding region from HIV-1 (RT-SHIV) and treated with short-course efavirenz monotherapy 13 weeks post-infection followed by daily combination antiretroviral therapy (ART) beginning at week 17. Bioinformatics tools were constructed to trace individual genomes from the beginning of infection to the end of the treatment.</p> <p>Results</p> <p>A well characterized challenge RT-SHIV inoculum was used to infect three monkeys. The RT-SHIV inoculum had 9 variant subpopulations and the dominant subpopulation accounted for 80% of the total genomes. In two of the three monkeys, the inoculated wild-type virus was rapidly replaced by new wild type variants. By week 13, the original dominant subpopulation in the inoculum was replaced by new dominant subpopulations, followed by emergence of variants carrying known NNRTI resistance mutations. However, during ART, virus subpopulations containing resistance mutations did not outgrow the wide-type subpopulations until a minor subpopulation carrying linked drug resistance mutations (K103N/M184I) emerged. We observed that persistent viremia during ART is primarily made up of wild type subpopulations. We also found that subpopulations carrying the V75L mutation, not known to be associated with NNRTI resistance, emerged initially in week 13 in two macaques. Eventually, all subpopulations from these two macaques carried the V75L mutation.</p> <p>Conclusion</p> <p>This study quantitatively describes virus evolution and population dynamics patterns in an animal model. The fact that wild type subpopulations remained as dominant subpopulations during ART treatment suggests that the presence or absence of at least some known drug resistant mutations may not greatly affect virus replication capacity <it>in vivo</it>. Additionally, the emergence and prevalence of V75L indicates that this mutation may provide the virus a selective advantage, perhaps escaping the host immure system surveillance. Our new method to quantitatively analyze viral population dynamics enabled us to observe the relative competitiveness and adaption of different viral variants and provided a valuable tool for studying HIV subpopulation emergence, persistence, and decline during ART.</p

    PLoS One

    Get PDF
    Introduction The long-term prognosis of HIV-2-infected patients receiving antiretroviral therapy (ART) is still challenging, due to the intrinsic resistance to non-nucleoside reverse transcriptase inhibitors (NNRTI) and the suboptimal response to some protease inhibitors (PI). The objective was to describe the 5-years outcomes among HIV-2 patients harboring drug-resistant viruses. Methods A clinic-based cohort of HIV-2-patients experiencing virologic failure, with at least one drug resistance mutation was followed from January 2012 to August 2017 in Côte d’Ivoire. Follow-up data included death, lost to follow-up (LTFU), immuno-virological responses. The Kaplan-Meier curve was used to estimate survival rates. Results A total of 31 HIV-2 patients with virologic failure and with at least one drug resistance mutation were included. Two-third of them were men, 28(90.3%) were on PI-based ART-regimen at enrolment and the median age was 50 years (IQR = 46–54). The median baseline CD4 count and viral load were 456 cells/mm3 and 3.7 log10 c/mL respectively, and the participants have been followed-up in median 57 months (IQR = 24–60). During this period, 21 (67.7%) patients switched at least one antiretroviral drug, including two (6.5%) and three (9.7%) who switched to a PI-based and an integrase inhibitor-based regimen respectively. A total of 10(32.3%) patients died and 4(12.9%) were LTFU. The 36 and 60-months survival rates were 68.5% and 64.9%, respectively. Among the 17 patients remaining in care, six(35.3%) had an undetectable viral load (2. Conclusions The 36-months survival rate among ART-experienced HIV-2 patients with drug-resistant viruses is below 70%,lower than in HIV-1. There is urgent need to improve access to second-line ART for patients living with HIV-2 in West Afric

    Characterizing the emergence and persistence of drug resistant mutations in HIV-1 subtype C infections using 454 ultra deep pyrosequencing.

    Get PDF
    BACKGROUND: The role of HIV-1 RNA in the emergence of resistance to antiretroviral therapies (ARTs) is well documented while less is known about the role of historical viruses stored in the proviral DNA. The primary focus of this work was to characterize the genetic diversity and evolution of HIV drug resistant variants in an individual's provirus during antiretroviral therapy using next generation sequencing. METHODS: Blood samples were collected prior to antiretroviral therapy exposure and during the course of treatment from five patients in whom drug resistance mutations had previously been identified using consensus sequencing. The spectrum of viral variants present in the provirus at each sampling time-point were characterized using 454 pyrosequencing from multiple combined PCR products. The prevalence of viral variants containing drug resistant mutations (DRMs) was characterized at each time-point. RESULTS: Low abundance drug resistant viruses were identified in 14 of 15 sampling time-points from the five patients. In all individuals DRMs against current therapy were identified at one or more of the sampling time-points. In two of the five individuals studied these DRMs were present prior to treatment exposure and were present at high prevalence within the amplified and sequenced viral population. DRMs to drugs other than those being currently used were identified in four of the five individuals. CONCLUSION: The presence of DRMs in the provirus, regardless of their observed prevalence did not appear to have an effect on clinical outcomes in the short term suggesting that the drug resistant viral variants present in the proviral DNA do not appear to play a role in the short term in facilitating the emergence of drug resistance

    A Polymorphism at Position 400 in the Connection Subdomain of HIV-1 Reverse Transcriptase Affects Sensitivity to NNRTIs and RNaseH Activity

    Get PDF
    <div><p>Reverse transcriptase (RT) plays an essential role in HIV-1 replication, and inhibition of this enzyme is a key component of HIV-treatment. However, the use of RT inhibitors can lead to the emergence of drug-resistant variants. Until recently, most clinically relevant resistance mutations were found in the polymerase domain of RT. Lately, an increasing number of resistance mutations has been identified in the connection and RNaseH domain. To further explore the role of these domains we analyzed the complete RT sequence of HIV-1 subtype B patients failing therapy. Position A/T400 in the connection subdomain is polymorphic, but the proportion of T400 increases from 41% in naĂŻve patients to 72% in patients failing therapy. Previous studies suggested a role for threonine in conferring resistance to nucleoside RT inhibitors. Here we report that T400 also mediates resistance to non-nucleoside RT inhibitors. The susceptibility to NVP and EFV was reduced 5-fold and 2-fold, respectively, in the wild-type subtype B NL4.3 background. We show that substitution A400T reduces the RNaseH activity. The changes in enzyme activity are remarkable given the distance to both the polymerase and RNaseH active sites. Molecular dynamics simulations were performed, which provide a novel atomistic mechanism for the reduction in RNaseH activity induced by T400. Substitution A400T was found to change the conformation of the RNaseH primer grip region. Formation of an additional hydrogen bond between residue T400 and E396 may play a role in this structural change. The slower degradation of the viral RNA genome may provide more time for dissociation of the bound NNRTI from the stalled RT-template/primer complex, after which reverse transcription can resume.</p></div
    corecore