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drug resistant mutations in HIV-1 subtype C
infections using 454 ultra deep pyrosequencing
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Judith R Glynn3 and Simon A Travers4*

Abstract

Background: The role of HIV-1 RNA in the emergence of resistance to antiretroviral therapies (ARTs) is well
documented while less is known about the role of historical viruses stored in the proviral DNA. The primary focus
of this work was to characterize the genetic diversity and evolution of HIV drug resistant variants in an individual’s
provirus during antiretroviral therapy using next generation sequencing.

Methods: Blood samples were collected prior to antiretroviral therapy exposure and during the course of treatment
from five patients in whom drug resistance mutations had previously been identified using consensus sequencing.
The spectrum of viral variants present in the provirus at each sampling time-point were characterized using 454
pyrosequencing from multiple combined PCR products. The prevalence of viral variants containing drug resistant
mutations (DRMs) was characterized at each time-point.

Results: Low abundance drug resistant viruses were identified in 14 of 15 sampling time-points from the five
patients. In all individuals DRMs against current therapy were identified at one or more of the sampling time-points.
In two of the five individuals studied these DRMs were present prior to treatment exposure and were present at
high prevalence within the amplified and sequenced viral population. DRMs to drugs other than those being
currently used were identified in four of the five individuals.

Conclusion: The presence of DRMs in the provirus, regardless of their observed prevalence did not appear to have
an effect on clinical outcomes in the short term suggesting that the drug resistant viral variants present in the
proviral DNA do not appear to play a role in the short term in facilitating the emergence of drug resistance.
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Background
While the role of HIV-1 RNA in the emergence of resist-
ance to highly active antiretroviral therapy (HAART) has
been widely documented, less is known about the role of
historical viruses stored in the proviral DNA. Following
treatment interruption, latent viruses stored in the pro-
virus have been shown to be responsible for the rapid
rebound of viral load following treatment interruption
[1-3]. However, Palmisano and colleagues suggested that
the mutational archive stored in proviral DNA remains

unchanged during HAART [4] with higher levels of
DRMs observed in RNA extracted from circulating virus
than those present in the provirus [5]. The suggested
reason for these discrepancies is that standard bulk se-
quencing cannot fully access the spectrum of viral var-
iants stored in the proviral DNA [5] where resistant
viruses may be present in low abundance.
Recent research on HIV-1 in Karonga District, Malawi

has shown that of the 40 HIV-1 subtype C infected indi-
viduals on HAART that we tested, 14% contained drug
resistance mutations (DRMs) in the reverse transcriptase
(RT) gene of viruses stored in the provirus [6] with
clonal sequencing of latent viruses showing discrepan-
cies in the presence and prevalence of DRMs in the
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proviral DNA [7]. These discrepancies further support
the limitations of bulk sequencing for determining drug
resistance in viruses contained within the proviral DNA.
Traditionally, methods such as single genome amplifica-
tion and real-time PCR have been used to identify the
presence of low abundance viral variants [8,9]. We, and
others, have shown the importance of clonal sequencing
in revealing the spectrum of viral variants present within
an individual [6]. However cloning and other tradition-
ally used methods are labour intensive, expensive, time
consuming and/or restricted to the detection of single
variants. The advent of next generation sequencing plat-
forms means that clinically relevant low abundance drug
resistant HIV variants can be detected to prevalences as
low as 1% of the viral population [10-16]. While several
studies have found correlations between the presence of
low abundance drug resistant viruses and clinical out-
comes this has not always been the case [17,18]. To our
knowledge, no studies have been undertaken to use ultra
deep pyrosequencing (UDPS) to quantify the prevalence
of low abundance drug resistant viral variants in the pro-
viral DNA. Here, we undertake such a study and
endeavor to correlate the presence/absence of such
viruses with treatment outcome.

Methods
Sample selection
Samples were collected from five patients recruited to
an antiretroviral cohort study between 2007 and 2009
from an ART clinic in northern Malawi. Antiretrovirals
have been available in the District since 2005 and in this
clinic since 2006. All patients have been started on a
fixed dose combination of stavudine, lamivudine and
nevirapine on the basis of clinical staging or CD4 count.
Previous work identified discrepancies or ambiguities in
the presence/absence of drug resistant mutations in viral
sequences from samples collected from these five indivi-
duals at sequential time-points during treatment [6]. Fif-
teen samples representing an average of three sampling
time-points from five of these patients were selected for
subsequent analysis using ultra-deep pyrosequencing in
this current study (Table 1).

Ultra deep pyrosequencing (UDPS)
DNA extraction and nested PCR was performed as
previously described [6] with the second round PCR pri-
mers modified to include the A and B adaptors neces-
sary for 454 sequencing. Each second round primer also
included a unique sequence tag (MID) to enable us to
distinguish between samples from the multiplexed se-
quencing reaction. The region targeted for amplification
was 760 nucleotides in length covering amino acid posi-
tions 13 through 257 of reverse transcriptase (HXB2
numbering). Temperature gradient PCRs identified 57.5°C

as the optimum annealing temperature for all secondary
PCR reactions with the extended primer sequences for
UDPS. Considerable effort was invested into optimizing
the PCR amplification approach to account for potential
over-amplification of a subset of viral variants present in
the quasispecies. For each sample the final PCR strategy
involved performing ten first round 100 μl PCR reac-
tions. 5 μl of the product of each primary PCR was
used as starting material for two separate secondary
PCR reactions, generating a maximum of 20 secondary
amplification reactions from each sample. PCR products
were quantified on 1% agarose gels in comparison with
the Hyperladder 1 molecular marker (Bioline). The 20
PCR products generated from each DNA sample were
then mixed in equimolar amounts and an aliquot of the
mixed products arising from each DNA sample were
then electrophoresed side by side for comparison and
further confirmation of quality and quantity. PCR pro-
ducts from all samples were then further pooled in equi-
molar amounts. Amplicon sequencing was performed on
one half of a picotiter plate using a 454 Genome
Sequencer FLX by LGC Genomics (Germany).

Data cleaning and analysis
Sequence reads from each individual sample were sepa-
rated based on their MIDs and subsequent quality con-
trol and analysis was performed independently for the
reads corresponding to each sample. Next, the data were
trimmed using the modified-Mott algorithm implemen-
ted in Geneious 5.4.3 [19] with a 0.01 error probability
limit. Initially the identity of the resulting reads to their
respective consensus sequence was determined using the
BLAST-like word (k-mer) matching approach imple-
mented in Segminator 1.3.2 [20] with a word size of five
and a read quality of two. Reads with significant identity
were aligned to the consensus sequence excluding any
reads less than 22 nucleotides in length, the dataset was
translated to amino acids and the frequency of amino
acids at each position was determined using Segminator
1.3.2 [20].
The prevalence of drug resistant mutations (DRMs)

was determined for each sample with three categories of
DRMS identified. Firstly, DRMs detected in less than 1%
of the reads sequenced from the amplified viral popula-
tion for that position were discounted to account for
potential errors due to the error rate of PCR and UDPS.
The second category of mutations consisted of those
with a prevalence greater than 1% and less than 20%,
corresponding to those that cannot be determined using
consensus sequencing. The final category consisted of
those DRMs with prevalence greater than 20%, compris-
ing mutations that can, in theory, be observed using
traditional consensus sequence genotyping. Given that
the number of reads that were sequenced at each
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timepoint in a patient were unlikely to be exactly the
same, we implemented a statistical approach for preva-
lence calculations as opposed to using a rigid fixed cut-
off. For every drug resistant mutation, the 95%
confidence interval from the binomial sampling distribu-
tion was calculated for the observed frequency taking
into account the number of reads sequenced at that
timepoint. The upper 95% confidence interval was used
as a cutoff for the allocation of DRMs into both the
greater than 1% and less than 20% category and the
greater than 20% category.
Recent work has described HIV drug resistance

mutations that are located within, or adjacent to, homo-
polymers in the HIV Pol gene [21]. Given that one
of the known shortcomings of the 454 pyrosequencing
approach is that it can cause false insertions or deletions
in homopolymeric tracts, we undertook an approach
to verify if drug resistance mutations at such

homopolymers were genuine DRMs or arose as the re-
sult of sequencing error. We have developed a novel tool
called rapid amplicon mapping in codon space
(RAMICS) that uses hidden markov models to map next
generation sequencing reads to a reference sequence in
codon space, thus generating a biologically relevant
alignment (Wright et al., in prep). This approach identi-
fies the presence of hompolymer runs in data and con-
siders them in the mapping process, thus accounting for
the possible variances in length as a result of sequencing
error. Using RAMICS we confirmed whether resistance
calls at DRMs located at homopolymer tracts in the
sequence data for all of the datasets were biologically
relevant or had arisen as a result of sequencing error.
Permission for the study was received from the

National Health Sciences Research Committee, Malawi,
and the Ethics Committee of the London School of
Hygiene and Tropical Medicine, UK. Written informed

Table 1 Samples subjected to ultra-deep pyrosequencing in this study

Patient Number Sampling Time-point NRTI mutations NNRTI mutations Primary PCR Secondary PCR

Patient 2 Baseline 9 9

8 Months K103KN

11 Months Y181C 10 20

14 Months 3 20

Patient 32 Baseline V90I 6 9

7 Months T215ST 2 20

8 Months M184I

14 Months

15 Months G190AE

16 Months V108AV 3 20

24 Months 2 20

Patient 42 Baseline 1 (2008) 2 7

Baseline 2 (2009) V118IV 5 20

5 Months V118I

Patient 45 Baseline V106I, E138A, G190A 9 20

8 Months V106I, E138A, G190A 10 20

13 Months Sequence Failed 10 20

Patient 76 Baseline V90I, Y181CY, H221HY 10 20

3 Months

6 Months Y181C 10 15

9 Months Sequence Failed 10 19

Consensus sequencing of reverse transcriptase from five patients had previously revealed discrepancies in the presence/absence of DRMs [6,7]. Baseline describes
the sampling time-point prior to ART initiation with subsequent samples being described as the number of months post ART initiation. Mutations shown in the
table are those observed in the consensus sequencing of each sampling time-point with DRMs to current therapy marked in bold. The sample time-point names
for samples selected for subsequent ultra-deep pyrosequencing are marked in bold and the success rate for multiple PCRs for these samples are also shown. The
remaining six samples were not chosen due to difficulty/failure with PCR amplification or consensus sequencing.
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consent for participation in the study was obtained from
all participants.

Results
DNA amplification and UDPS data cleaning
Despite considerable effort, PCR amplification was not
uniformly successful for all DNA samples. Secondary
PCR was successful from ten primary PCRs for six of
the 15 samples with all 20 secondary PCR reactions
being successful in four of these (Table 1). Amplification
from primary PCRs was less successful for the remaining
samples ranging from positive secondary amplification
from two to nine first round reactions (Table 1). In
instances where secondary PCRs were unsuccessful from
primary reactions, additional secondary PCRs were per-
formed from those primary PCR products that did yield
amplification, in order to maximize diversity (Table 1).
Despite multiple attempts to obtain 20 secondary PCR
amplifications, fewer than 10 secondary products were
obtained from the baseline sample from patients 2, 32
and 42. Although secondary amplification was successful
in all 20 reactions from the 2nd baseline sample from pa-
tient 42, the amplification was very weak compared to
secondary amplifications from other patients. Similar
results were obtained from 16th month from Patient 32
and 13th month sample from patient 45.

Deep sequencing and data cleaning
454 sequencing resulted in a total of 372,169 reads of
which 1038 could not be sorted on the basis of their
MID. Of the remaining 371,131 reads the number of
sequences representing each of the 15 samples ranged
from 12,926 to 38,514 (Additional file 1: Figure S1A).
Quality trimming was employed with a 0.01 error prob-
ability limit meaning that each trimmed read has a mini-
mum average accuracy greater than 99%. This trimming
step did not result in the removal of any reads (as no
minimum length requirement was imposed in this step),
however the average length of all reads was significantly
decreased from 541 for reads before trimming to 176 for
reads following trimming (Additional file 1: Figure S1B).
The number of quality trimmed reads we attempted to

map to the template sequence ranged from 12,925 to
38,459 with reads being excluded from the mapping pro-
cedure as a result of falling below the minimum read
length score (22 nucleotides) or due to low identity to
the template sequence. Between 677 and 3007 reads per
patient were excluded based upon the read length cutoff
(Additional file 1: Figure S1B) with a range of 1324 and
14,609 reads per patient excluded because of low iden-
tity to the template. Three samples (Patient 45 at 13
months, patient 32 at 16 months and patient 42 baseline
2) had large numbers of reads excluded during the map-
ping process with 43%, 61% and 65% percent of reads

removed respectively. In each of these cases the majority
of reads were removed due to low identity to the tem-
plate sequence. Further analysis of the excluded reads
from these individuals showed that a large proportion of
them mapped to regions throughout the HIV genome
outside of the region of interest. Sequencing coverage
towards the centre of each amplicon was significantly
less than at either the 5’ or 3’ end of the amplicon.

Prevalence of drug resistance mutations identified with
deep sequencing
In all samples the vast majority (between 74% and 96%)
of drug resistance mutations identified by deep sequen-
cing were detected at prevalence levels less than 1% of
the sequenced viral population (Figure 1A) and were,
thus, excluded from any subsequent analysis. For the
remaining DRMs, we assessed the effect of sequencing
error at homopolymeric regions and, in all instances, we
found that sequencing error was not responsible for the
resistance calls indicating that they are, in fact, genuine.
An average of 11% of observed DRMs (range 2.5-
21.21%) were detected at prevalence levels between 1%
and 20% of the sequenced viral population with an aver-
age of 6% (range 0–12.5%) identified at greater than 20%
prevalence in the sequenced viral population (Figure 1A
and Table 2).
UDPS identified an additional 32 DRMs (17 against

current therapy) that had not been observed by consen-
sus sequencing (Table 2). The vast majority of these (26)
were observed at a prevalence between 1-20% of the
sequenced viral population (Table 2). Bulk consensus se-
quencing was not successful for the final samples from
patients 45 and 76 (Table 1), however UDPS identified
DRMs at both 1-20% (9 DRMs, 4 against current ther-
apy) and greater than 20% prevalence (6 mutations, 2
against current therapy) within the sequenced viral
population (Table 2). Of the 15 DRMs (five to current
therapy) seen in bulk sequencing of samples subjected to
UDPS (Table 1), 10 of these (four against current ther-
apy) were also observed in the UDPS sequencing with
the vast majority of these (8 of the 10) being seen at a
prevalence greater than 20% in the sequenced viral
population (Table 2). The two DRMs observed at less
than 20% of the sequenced viral population were V90I
(9.5% prevalence) and H221Y (7.7% prevalence) in the
baseline samples from patients 32 and 76 respectively.
Three DRMs identified in bulk sequencing (Y181C in
patient 2 at 11 months and T215ST and V108AV in pa-
tient 32 at 7 and 16 months respectively) were not
observed at any level of prevalence in UDPS. DRMs
V118I and E138A, from patients 42 (baseline 2) and 45
(8 months) respectively, were observed in the UDPS data
but sequence coverage at these positions was below
the cutoff.
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Figure 1 (See legend on next page.)
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Of the mutations detected at greater than 1% preva-
lence by UDPS against current 1st line therapy, only
K65R was observed, albeit at varying levels, in all of the
patients studied (Figure 1). In all patients the prevalence
of K65R in the sequenced viral population was observed
at less than 20%, however the prevalence in each individ-
ual increased over time. Only in two patients were
DRMs to current 1st line therapy observed at prevalence
greater than 20% of the sequenced viral population with
G190A and Y181C seen in patients 45 and 76 respect-
ively (Figure 1). In both of these cases the DRM was
already present in the patient’s viral population prior to
antiretroviral (ARV) exposure and was observed to fluc-
tuate during exposure (Figure 1). A similar fluctuating
pattern was seen in patient 2 whereby M184V and
G190E were not identified by UDPS at baseline or at 14
months yet represented 3% and 2% of the sequenced
viral population respectively in the sample at 11 months
(Figure 1). Aside from DRMs against current 1st line
therapy 13 DRMS against other ARVs were identified in
four patients (Additional file 2: Figure S2). These muta-
tions were mostly polymorphisms that have limited ef-
fect on drug resistance.

Discussion
We have used ultra deep pyrosequencing (UDPS) to in-
vestigate the presence of low abundance drug resistance
mutations present within the proviral DNA of indivi-
duals on ART. Previous studies have suggested that the
mutational archive stored in proviral DNA remains un-
changed during HAART [4] with higher levels of DRMs
observed in RNA extracted from circulating virus than
those present in the provirus [5]. The suggested reasons
for these observations are that standard bulk sequencing
cannot fully access the spectrum of viral variants stored
in the proviral DNA [5] coupled with the fact that resist-
ant variants may be present at low prevalence within the
proviral DNA. The sensitivity of UDPS to detect drug
resistant minor variants is limited by the number of
virus templates that can be successfully extracted and
amplified using PCR [12,22]. Through our thorough
PCR approach coupled with the use of UDPS as opposed
to consensus sequencing we sought to maximise the
genetic heterogeneity that was amplified and subse-
quently sequenced from the proviral DNA. As might be

expected, there was an association between PCR amplifi-
cation success and sequencing success. For patient 32
month 16, patient 45 month 13, and the 2nd baseline
sample from patient 42, PCR amplification was weaker
and thus a higher volume of PCR amplicon had to be
added to reach the same final quantity for sequencing as
for other samples. For these three samples far more
sequences resulting from pyrosequencing had low iden-
tity with the consensus sequence and were excluded. It
was still worth carrying out pyrosequencing on these
samples, however, as thousands of sequences with high
identity were returned for analysis. The differences in
numbers of quality reads between samples would pre-
vent comparisons of proportions of DRMS across these
samples, but not the identification of minor variants.
Bulk sequencing approaches can only detect viral var-

iants present in greater than 20% of the viral population
[23-25] and we did see strong correlation between
DRMs observed in bulk sequencing and those at greater
than 20% of the sequenced viral population in the UDPS
at the same time-point. There were, however, further
DRMs observed at greater than 20% prevalence that had
not been identified using bulk sequencing and the obser-
vation of these are likely the result of our approach suc-
cessfully accessing a greater level of the viral diversity
present in the proviral DNA. We would have expected
UDPS to detect all of the mutations that were detected
via bulk sequencing but this was not the case. From each
of five patient samples one DRM, retrieved using the
bulk sequencing approach, was absent from the reads
retrieved from the samples through the UDPS approach.
The phylogenetic origin of each sequence from the bulk
sequencing approach was confirmed as belonging to the
individual in question, as was the presence of the DRM
in the sequence chromatograph indicating that the
reporting of the original mutation was not an error, nor
was there a mix up of samples. For two samples (patient
32 sample 16 month and baseline 2 samples from pa-
tient 42) poor PCR amplification success may be respon-
sible for some mutations being absent. However, for the
other three samples this is not the case. Despite utilizing
multiple primary and secondary PCRs to maximize the
diversity sampled, PCR bottleneck still cannot be
excluded as a cause of the absent DRMs. However, as
PCR amplifications were from proviral DNA it is

(See figure on previous page.)
Figure 1 Observed DRMs at all sequenced sampling time-points for each patient. Panel A shows the percentage of DRMs expressed as in
each prevalence category for each patient. DRMs observed at less than 1% of the amplified and sequenced viral population were discounted
from further analysis in this study to account for potential errors due to the error rate of PCR and UDPS but are shown in this figure for
comparison purposes. Panel B shows the prevalence of DRMs present in the amplified and sequenced viral population against the patients’
current therapy at each of the sampling time-points. For each prevalence point, the upper and lower 95% confidence intervals from the binomial
sampling distribution are shown as error bars. DRMs with a prevalence less than 1% of the amplified and sequenced viral population are
not included.
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perhaps not surprising that some differences would
be found between amplicons deriving from different
aliquots of DNA, as latent viruses may be more diverse
than circulating virus. It should be noted that the pres-
entation of prevalence in our work, as with all other
similar studies, should be interpreted as the prevalence
observed in the amplified and sequenced viral popula-
tion as opposed to being a direct measure of the preva-
lence of a variant in an individual’s viral population. The
discrepancy between these two interpretations has yet to
be elucidated however the exciting development of de-
generative primer ID approaches [26] will enable such
quantification of these potential biases in the near future
and help further resolve the PCR bottle neck issue.
Resistant viruses that make up as little as 1% of the

viral population within an individual have been sug-
gested to be clinically important as they can expand rap-
idly under the selective pressure exerted by exposure to
HAART [10-16]. The ability of UDPS to effectively
quantify such variants is limited by PCR and sequencing
induced errors. Hedskog and colleagues eloquently
showed that the error rate of UDPS is not uniform
across sites within the pol gene and that PCR-induced
recombination is minimal [27]. Learning from reported
issues in other studies we used larger sample volumes
[28-30], a high depth of coverage [12,28-30] and a some-
what conservative cutoff of 1% for identifying low

prevalence variants. In all patients we identified low
abundance variants with DRMs against the current 1st

line therapy. In particular K65R, strongly associated with
the development of virologic failure in subtype C
infected individuals [31-37], was observed at low abun-
dance in all patients. While we cannot rule out that the
observation of low abundance K65R at various time-
points in all patients is not as a result of the previously
reported propensity for PCR error at this position in
subtype C viruses [38] we did use a high fidelity PCR
enzyme and multiple primary PCRs to try to avoid such
PCR error.
Despite the observation of low abundance drug resist-

ant variants in all individuals, these viruses appear
to have had minimal effect on measured treatment
outcome. Due to the geographically isolated setting
resulting in logistical difficulties viral loads are not rou-
tinely assessed and treatment success, to date, has been
measured using WHO stages and CD4 counts. Thus, at
the final sampling timepoint one (patient 2) is defined as
having immune failure (CD4 cell count <200 cells/mm3

after at least 12 months on ART) with all remaining
patients showing satisfactory treatment response. While
the CD4 counts of two of these individuals, patients 45
and 76, were sufficiently high to avoid being interpreted
as treatment failures, their semi-borderline CD4 counts
(258 and 268 CD4 T cells cells/mm3) coupled with the

Table 2 Prevalence of DRMs in pyrosequencing data

Patient
number

Sampling time-
point

CD4 count 1-20% prevalence >20% Prevalence

Patient 2 Baseline 64 K65R

11 Months N/A (9 months: 110) K65R, M184V, G190E

14 Months 153 K65R

Patient 32 Baseline 271 K65R, V90I

7 Months 384 K65R V90I

16 Months N/A (19 months:
443)

K65R

24 Months N/A K65R

Patient 42 Baseline 1 (2008) N/A K65R

Baseline 2 (2009) 362 K65R, A98S, G190A

Patient 45 Baseline 55 K65R, A98S, K101E, K103E, K103N, K103R,
M184I

V106I, E138A, G190A

8 Months 216 K65R, A98S, K101E, K103E, K103R V106I, G190A

13 Months 258 K65R, K101E, K103E, K103N, K103R V106I, E138A, G190A

Patient 76 Baseline 118 K65R, T69I, G190A, H221Y V90I, A98S, Y181C

6 Months N/A (8 months: 269) K65R, K103N, H221Y V90I, A98S, K103E, Y181C,
H221Y

9 Months N/A (12 months:
268)

K65R, V90I, K103E, G190A, H221Y A98S, K103R, Y181C

Only DRMs observed at >1% in the sequence data are shown. DRMs relevant to each patient’s current therapy regime are shown in bold and those that were also
seen in consensus sequencing are underlined. CD4 counts (x10-6/L) are shown. When a CD4 count was not available for a sampling time-point the count from the
sample taken at a date closest to that time-point is shown.
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presence of multiple minor variant DRMs in their pro-
virus could suggest that these patients may be at high
risk for imminent failure. Nevertheless, the CD4 counts
of all patients rose over the course of the study despite
the detection of low abundance variants at early time-
points and all of the participants remained on 1st line
therapy until their final sampling timepoint up to as
much as 24 months after treatment initiation. Thus, it
appears that the presence of low abundance DRMs in
the provirus of these individuals has little effect on treat-
ment outcome in the short-term. Previous work suggests
that HIV rebounds from latently infected cells rather
than as a result of continuing low-level replication [1]
and, thus, there is always a possibility that these low
abundance resistant variants could emerge to dominate
from the proviral DNA following treatment interruption
or as a result of poor adherence.

Conclusion
We observe, in the individuals on continuous antiretro-
viral therapy studied here, low abundance drug resistant
viral variants present in the proviral DNA do not appear
to play an immediate role in facilitating the emergence
of drug resistance through emergence to dominance.
Whether this is true in all instances should be explored
further in future longitudinal studies and this group of
patients should be monitored further given that in all of
the individuals we detected minor variants with DRMs
against their current treatment regimen.

Additional files

Additional file 1: Figure S1. 454 sequence quality control. (A) The total
number of sequenced reads obtained for each sampling time-point is
shown as the total size of the bar representing each time-point. The
number of reads mapped to the reference sequence and removed as a
result of length and identity cutoffs are also shown. (B) The mean and
range of read lengths observed for each sequenced sample are shown
both before and after quality trimming. In all cases the mean and range
of read lengths decreases significantly following trimming.

Additional file 2: Figure S2. Observed DRMs against ARVs not present
in the patients’ current regimen at all sequenced sampling time-points
for each patient. DRMs with observed prevalence less than 1% of the
amplified and sequenced viral population are not included. For each
prevalence point, the upper and lower 95% confidence intervals from the
binomial sampling distribution are shown as error bars.
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