24 research outputs found

    Retinoic acid reduces human neuroblastoma cell migration and invasiveness: effects on DCX, LIS1, neurofilaments-68 and vimentin expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma is a severe pediatric tumor, histologically characterised by a variety of cellular phenotypes. One of the pharmacological approaches to neuroblastoma is the treatment with retinoic acid. The mechanism of action of retinoic acid is still unclear, and the development of resistance to this differentiating agent is a great therapy problem.</p> <p>Doublecortin, a microtubule-associated protein involved in neuronal migration, has recently been proposed as a molecular marker for the detection of minimal residual disease in human neuroblastoma. Nevertheless, no information is available on the expression of doublecortin in the different cell-types composing human neuroblastoma, its correlation with neuroblastoma cell motility and invasiveness, and the possible modulations exerted by retinoic acid treatment.</p> <p>Methods</p> <p>We analysed by immunofluorescence and by Western blot analysis the presence of doublecortin, lissencephaly-1 (another protein involved in neuronal migration) and of two intermediate filaments proteins, vimentin and neurofilament-68, in SK-N-SH human neuroblastoma cell line both in control conditions and under retinoic acid treatment. Migration and cell invasiveness studies were performed by wound scratch test and a modified microchemotaxis assay, respectively.</p> <p>Results</p> <p>Doublecortin is expressed in two cell subtypes considered to be the more aggressive and that show high migration capability and invasiveness.</p> <p>Vimentin expression is excluded by these cells, while lissencephaly-1 and neurofilaments-68 are immunodetected in all the cell subtypes of the SK-N-SH cell line. Treatment with retinoic acid reduces cell migration and invasiveness, down regulates doublecortin and lissencephaly-1 expression and up regulates neurofilament-68 expression. However, some cells that escape from retinoic acid action maintain migration capability and invasiveness and express doublecortin.</p> <p>Conclusion</p> <p>a) Doublecortin is expressed in human neuroblastoma cells that show high motility and invasiveness;</p> <p>b) Retinoic acid treatment reduces migration and invasiveness of the more aggressive cell components of SK-N-SH cells;</p> <p>c) The cells that after retinoic acid exposure show migration and invasive capability may be identified on the basis of doublecortin expression.</p

    Testosterone, cortisol, and serotonin as key regulators of social aggression: A review and theoretical perspective

    Get PDF
    In human and non-human animals the steroid hormones cortisol and testosterone are involved in social aggression and recent studies suggest that these steroids might jointly regulate this behavior. It has been hypothesized that the imbalance between cortisol and testosterone levels is predictive for aggressive psychopathology, with high testosterone to cortisol ratio predisposing to a socially aggressive behavioral style. In this review, we focus on the effects of cortisol and testosterone on human social aggression, as well as on how they might modulate the aggression circuitry of the human brain. Recently, serotonin is hypothesized to differentiate between impulsive and instrumental aggression, and we will briefly review evidence on this hypothesis. The aim of this article is to provide a theoretical framework for the role of steroids and serotonin in impulsive social aggression in humans

    Glucocorticoid receptor blockade normalizes hippocampal alterations and cognitive impairment in streptozotocin-induced type 1 diabetes mice

    Get PDF
    Type 1 diabetes is a common metabolic disorder accompanied by an increased secretion of glucocorticoids and cognitive deficits. Chronic excess of glucocorticoids per se can evoke similar neuropathological signals linked to its major target in the brain, the hippocampus. This deleterious action exerted by excess adrenal stress hormone is mediated by glucocorticoid receptors (GRs). The aim of the present study was to assess whether excessive stimulation of GR is causal to compromised neuronal viability and cognitive performance associated with the hippocampal function of the diabetic mice. For this purpose, mice had type 1 diabetes induced by streptozotocin (STZ) administration (170 mg/kg, i.p.). After 11 days, these STZ-diabetic mice showed increased glucocorticoid secretion and hippocampal alterations characterized by: (1) increased glial fibrillary acidic protein-positive astrocytes as a marker reacting to neurodegeneration, (2) increased c-Jun expression marking neuronal activation, (3) reduced Ki-67 immunostaining indicating decreased cell proliferation. At the same time, mild cognitive deficits became obvious in the novel object-placement recognition task. After 6 days of diabetes the GR antagonist mifepristone (RU486) was administered twice daily for 4 days (200 mg/kg, p.o.). Blockade of GR during early type 1 diabetes attenuated the morphological signs of hippocampal aberrations and rescued the diabetic mice from the cognitive deficits. We conclude that hippocampal disruption and cognitive impairment at the early stage of diabetes are caused by excessive GR activation due to hypercorticism. These signs of neurodegeneration can be prevented and/or reversed by GR blockade with mifepristone. © 2009 Nature Publishing Group All rights reserved.Fil: Revsin, Yanina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Rekers, Niels V.. Leiden University Medical Center; Países BajosFil: Louwe, Mieke C.. Leiden University Medical Center; Países BajosFil: Saravia, Flavia Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: de Nicola, Alejandro Federico. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Ron De Kloet, E. Leiden University Medical Center; Países BajosFil: Oitzl, Melly S.. Leiden University Medical Center; Países Bajo
    corecore