373 research outputs found

    A glass bead semi-hydroponic system for intact maize root exudate analysis and phenotyping

    Get PDF
    Background: Although there have been numerous studies describing plant growth systems for root exudate collection, a common limitation is that these systems require disruption of the plant root system to facilitate exudate collection. Here, we present a newly designed semi-hydroponic system that uses glass beads as solid support to simulate soil impedance, which combined with drip irrigation, facilitates growth of healthy maize plants, collection and analysis of root exudates, and phenotyping of the roots with minimal growth disturbance or root damage. Results: This system was used to collect root exudates from seven maize genotypes using water or 1 mM CaCl2, and to measure root phenotype data using standard methods and the Digital imaging of root traits (DIRT) software. LC–MS/MS (Liquid Chromatography—Tandem Mass Spectrometry) and GC–MS (Gas Chromatography—Mass Spectrometry) targeted metabolomics platforms were used to detect and quantify metabolites in the root exudates. Phytohormones, some of which are reported in maize root exudates for the first time, the benzoxazinoid DIMBOA (2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one), amino acids, and sugars were detected and quantified. After validating the methodology using known concentrations of standards for the targeted compounds, we found that the choice of the exudate collection solution affected the exudation and analysis of a subset of analyzed metabolites. No differences between collection in water or CaCl2 were found for phytohormones and sugars. In contrast, the amino acids were more concentrated when water was used as the exudate collection solution. The collection in CaCl2 required a clean-up step before MS analysis which was found to interfere with the detection of a subset of the amino acids. Finally, using the phenotypic measurements and the metabolite data, significant differences between genotypes were found and correlations between metabolites and phenotypic traits were identified. Conclusions: A new plant growth system combining glass beads supported hydroponics with semi-automated drip irrigation of sterile solutions was implemented to grow maize plants and collect root exudates without disturbing or damaging the roots. The validated targeted exudate metabolomics platform combined with root phenotyping provides a powerful tool to link plant root and exudate phenotypes to genotype and study the natural variation of plant populations

    A comparison of particle mass spectrometers during the 1999 Atlanta Supersite Project

    Get PDF
    During the Atlanta Supersite Project, four particle mass spectrometers were operated together for the first time: NOAA's Particle Analysis by Laser Mass Spectrometer (PALMS), University of California at Riverside's Aerosol Time-of-Flight Mass Spectrometer (ATOFMS), University of Delaware's Rapid Single-Particle Mass Spectrometer II (RSMS-II), and Aerodyne's Aerosol Mass Spectrometer (AMS). Although these mass spectrometers are generally classified as similar instruments, they clearly have different characteristics due to their unique designs. One primary difference is related to the volatilization/ionization method: PALMS, ATOFMS, and RSMS-II utilize laser desorption/ionization, whereas particles in the AMS instrument are volatilized by impaction onto a heated surface with the resulting components ionized by electron impact. Thus mass spectral data from the AMS are representative of the ensemble of particles sampled, and those from the laser-based instruments are representative of individual particles. In addition, the AMS instrument cannot analyze refractory material such as soot, sodium chloride, and crustal elements, and some sulfate or water-rich particles may not always be analyzed with every laser-based instrument. A main difference among the laser-based mass spectrometers is that the RSMS-II instrument can obtain size-resolved single particle composition information for particles with aerodynamic diameters as small as 15 nm. The minimum sizes analyzed by ATOFMS and PALMS are 0.2 and about 0.35 μm, respectively, in aerodynamic diameter. Furthermore, PALMS, ATOFMS, and RSMS-II use different laser ionization conditions. Despite these differences the laser-based instruments found similar individual particle classifications, and their relative fractions among comparable sized particles from Atlanta were broadly consistent. Finally, the AMS measurements of the nitrate/sulfate mole ratio were highly correlated with composite measurements (r^2 = 0.93). In contrast, the PALMS nitrate/sulfate ion ratios were only moderately correlated (r^2 ∼ 0.7)

    Group B Streptococcus GAPDH Is Released upon Cell Lysis, Associates with Bacterial Surface, and Induces Apoptosis in Murine Macrophages

    Get PDF
    Glyceraldehyde 3-phosphate dehydrogenases (GAPDH) are cytoplasmic glycolytic enzymes that, despite lacking identifiable secretion signals, have been detected at the surface of several prokaryotic and eukaryotic organisms where they exhibit non-glycolytic functions including adhesion to host components. Group B Streptococcus (GBS) is a human commensal bacterium that has the capacity to cause life-threatening meningitis and septicemia in newborns. Electron microscopy and fluorescence-activated cell sorter (FACS) analysis demonstrated the surface localization of GAPDH in GBS. By addressing the question of GAPDH export to the cell surface of GBS strain NEM316 and isogenic mutant derivatives of our collection, we found that impaired GAPDH presence in the surface and supernatant of GBS was associated with a lower level of bacterial lysis. We also found that following GBS lysis, GAPDH can associate to the surface of many living bacteria. Finally, we provide evidence for a novel function of the secreted GAPDH as an inducer of apoptosis of murine macrophages

    Visualizing Graphene Based Sheets by Fluorescence Quenching Microscopy

    Full text link
    Graphene based sheets have stimulated great interest due to their superior mechanical, electrical and thermal properties. A general visualization method that allows quick observation of these single atomic layers would be highly desirable as it can greatly facilitate sample evaluation and manipulation, and provide immediate feedback to improve synthesis and processing strategies. Here we report that graphene based sheets can be made highly visible under a fluorescence microscope by quenching the emission from a dye coating, which can be conveniently removed afterwards by rinsing without disrupting the sheets. Current imaging techniques for graphene based sheets rely on the use of special substrates. In contrast, the fluorescence quenching mechanism is no longer limited by the types of substrates. Graphene, reduced graphene oxide, or even graphene oxide sheets deposited on arbitrary substrates can now be readily visualized by eye with good contrast for layer counting. Direct observation of suspended sheets in solution was also demonstrated. The fluorescence quenching microscopy offers unprecedented imaging flexibility and could become a general tool for characterizing graphene based materials.Comment: J. Am. Chem. Soc., Article ASA

    Forensic child and Adolescent Psychiatry and mental health in Europe

    Get PDF
    Background When faced with the discovery of their child’s self-harm, mothers and fathers may re-evaluate their parenting strategies. This can include changes to the amount of support they provide their child and changes to the degree to which they control and monitor their child. Methods We conducted an in-depth qualitative study with 37 parents of young people who had self-harmed in which we explored how and why their parenting changed after the discovery of self-harm. Results Early on, parents often found themselves “walking on eggshells” so as not to upset their child, but later they felt more able to take some control. Parents’ reactions to the self-harm often depended on how they conceptualised it: as part of adolescence, as a mental health issue or as “naughty behaviour”. Parenting of other children in the family could also be affected, with parents worrying about less of their time being available for siblings. Many parents developed specific strategies they felt helped them to be more effective parents, such as learning to avoid blaming themselves or their child for the self-harm and developing new ways to communicate with their child. Parents were generally eager to pass their knowledge on to other people in the same situation. Conclusions Parents reported changes in their parenting behaviours after the discovery of a child’s self-harm. Professionals involved in the care of young people who self-harm might use this information in supporting and advising parents.</p

    Interferon-Induced Ifit2/ISG54 Protects Mice from Lethal VSV Neuropathogenesis

    Get PDF
    Interferon protects mice from vesicular stomatitis virus (VSV) infection and pathogenesis; however, it is not known which of the numerous interferon-stimulated genes (ISG) mediate the antiviral effect. A prominent family of ISGs is the interferon-induced with tetratricopeptide repeats (Ifit) genes comprising three members in mice, Ifit1/ISG56, Ifit2/ISG54 and Ifit3/ISG49. Intranasal infection with a low dose of VSV is not lethal to wild-type mice and all three Ifit genes are induced in the central nervous system of the infected mice. We tested their potential contributions to the observed protection of wild-type mice from VSV pathogenesis, by taking advantage of the newly generated knockout mice lacking either Ifit2 or Ifit1. We observed that in Ifit2 knockout (Ifit2−/−) mice, intranasal VSV infection was uniformly lethal and death was preceded by neurological signs, such as ataxia and hind limb paralysis. In contrast, wild-type and Ifit1−/− mice were highly protected and survived without developing such disease. However, when VSV was injected intracranially, virus replication and survival were not significantly different between wild-type and Ifit2−/− mice. When administered intranasally, VSV entered the central nervous system through the olfactory bulbs, where it replicated equivalently in wild-type and Ifit2−/− mice and induced interferon-β. However, as the infection spread to other regions of the brain, VSV titers rose several hundred folds higher in Ifit2−/− mice as compared to wild-type mice. This was not caused by a broadened cell tropism in the brains of Ifit2−/− mice, where VSV still replicated selectively in neurons. Surprisingly, this advantage for VSV replication in the brains of Ifit2−/− mice was not observed in other organs, such as lung and liver. Pathogenesis by another neurotropic RNA virus, encephalomyocarditis virus, was not enhanced in the brains of Ifit2−/− mice. Our study provides a clear demonstration of tissue-, virus- and ISG-specific antiviral action of interferon

    Epidemiology of invasive group B streptococcal disease in infants from urban area of South China, 2011–2014

    Get PDF
    YesBackground: Group B Streptococcus (GBS) is a leading cause of morbidity and mortality in infants in both developed and developing countries. To our knowledge, only a few studies have been reported the clinical features, treatment and outcomes of the GBS disease in China. The severity of neonatal GBS disease in China remains unclear. Population-based surveillance in China is therefore required. Methods: We retrospectively collected data of <3 months old infants with culture-positive GBS in sterile samples from three large urban tertiary hospitals in South China from Jan 2011 to Dec 2014. The GBS isolates and their antibiotic susceptibility were routinely identified in clinical laboratories in participating hospitals. Serotyping and multi-locus sequence typing (MLST) were also conducted for further analysis of the neonatal GBS disease. Results: Total 70 cases of culture-confirmed invasive GBS infection were identified from 127,206 live births born in studying hospitals, giving an overall incidence of 0.55 per 1000 live births (95% confidence interval [CI] 0.44–0.69). They consisted of 49 with early-onset disease (EOD, 0.39 per 1000 live births (95% CI 0.29–0.51)) and 21 with late-onset disease (LOD, 0.17 per 1000 live births (95% CI 0.11–0.25)). The incidence of EOD increased significantly over the studying period. Five infants (4 EOD and 1 LOD) died before discharge giving a mortality rate of 7.1% and five infants (7.1%, 2 EOD and 3 LOD) had neurological sequelae. Within 68 GBS isolates from GBS cases who born in the studying hospitals or elsewhere, serotype III accounted for 77.9%, followed by Ib (14.7%), V (4.4%), and Ia (2.9%). MLST analysis revealed the presence of 13 different sequence types among the 68 GBS isolates and ST-17 was the most frequent sequence type (63.2%). All isolates were susceptible to penicillin, ceftriaxone, vancomycin and linezolid, while 57.4% and 51.5% were resistant to erythromycin and clindamycin, respectively. Conclusions: This study gains the insight into the spectrum of GBS infection in south China which will facilitate the development of the guidance for reasonable antibiotics usage and will provide evidence for the implementation of potential GBS vaccines in the future.Supported by medical and health science and technology projects of Health and Family Planning Commission of Guangzhou Municipality (grant number 20151A010034) and Guangdong provincial science and technology planning projects (grant number 2014A020212520)

    Serotype Distribution and Invasive Potential of Group B Streptococcus Isolates Causing Disease in Infants and Colonizing Maternal-Newborn Dyads

    Get PDF
    Serotype-specific polysaccharide based group B streptococcus (GBS) vaccines are being developed. An understanding of the serotype epidemiology associated with maternal colonization and invasive disease in infants is necessary to determine the potential coverage of serotype-specific GBS vaccines.Colonizing GBS isolates were identified by vaginal swabbing of mothers during active labor and from skin of their newborns post-delivery. Invasive GBS isolates from infants were identified through laboratory-based surveillance. GBS serotyping was done by latex agglutination. Serologically non-typeable isolates were typed by a serotype-specific PCR method. The invasive potential of GBS serotypes associated with sepsis within seven days of birth was evaluated in association to maternal colonizing serotypes.GBS was identified in 289 (52.4%) newborns born to 551 women with GBS-vaginal colonization and from 113 (5.6%) newborns born to 2,010 mothers in whom GBS was not cultured from vaginal swabs. The serotype distribution among vaginal-colonizing isolates was as follows: III (37.3%), Ia (30.1%), and II (11.3%), V (10.2%), Ib (6.7%) and IV (3.7%). There were no significant differences in serotype distribution between vaginal and newborn colonizing isolates (P = 0.77). Serotype distribution of invasive GBS isolates were significantly different to that of colonizing isolates (P<0.0001). Serotype III was the most common invasive serotype in newborns less than 7 days (57.7%) and in infants 7 to 90 days of age (84.3%; P<0.001). Relative to serotype III, other serotypes showed reduced invasive potential: Ia (0.49; 95%CI 0.31-0.77), II (0.30; 95%CI 0.13-0.67) and V (0.38; 95%CI 0.17-0.83).In South Africa, an anti-GBS vaccine including serotypes Ia, Ib and III has the potential of preventing 74.1%, 85.4% and 98.2% of GBS associated with maternal vaginal-colonization, invasive disease in neonates less than 7 days and invasive disease in infants between 7-90 days of age, respectively
    corecore