22 research outputs found

    IdeS: A Bacterial Proteolytic Enzyme with Therapeutic Potential

    Get PDF
    Background: IdeS, a proteinase from Streptococcus pyogenes, cleaves immunoglobulin (Ig)G antibodies with a unique degree of specificity. Pathogenic IgG antibodies constitute an important clinical problem contributing to the pathogenesis of a number of autoimmune conditions and acute transplant rejection. To be able to effectively remove such antibodies is therefore an important clinical challenge. Methodology/Principal Findings: IdeS was found to specifically and efficiently cleave IgG in human blood in vitro (20 mg of IdeS caused a complete degradation of IgG in one ml of human whole blood in 15 minutes) and to clear IgG from the blood stream of rabbits in vivo (no IgG was detected six hours following an intravenous injection of 5 mg of IdeS) without any side effects. In a mouse model of immune thrombocytopenic purpura (ITP), polyclonal IgG antibodies against platelet surface antigens were used to induce a lethal disease. These profoundly thrombocytopenic animals were treated and cured by a single injection of IdeS. Conclusions/Significance: Novel information is provided concerning the IgG-cleaving activity of IdeS in vitro and in vivo. The highly specific and rapid elimination of IgG in vivo, the dramatic effect in a mouse model of ITP, and the lack of sid

    Novel IgG-degrading enzymes of the IgdE protease family link substrate specificity to host tropism of <i>Streptococcus</i> species

    Get PDF
    Recently we have discovered an IgG degrading enzyme of the endemic pig pathogen S. suis designated IgdE that is highly specific for porcine IgG. This protease is the founding member of a novel cysteine protease family assigned C113 in the MEROPS peptidase database. Bioinformatical analyses revealed putative members of the IgdE protease family in eight other Streptococcus species. The genes of the putative IgdE family proteases of S. agalactiae, S. porcinus, S. pseudoporcinus and S. equi subsp. zooepidemicus were cloned for production of recombinant protein into expression vectors. Recombinant proteins of all four IgdE family proteases were proteolytically active against IgG of the respective Streptococcus species hosts, but not against IgG from other tested species or other classes of immunoglobulins, thereby linking the substrate specificity to the known host tropism. The novel IgdE family proteases of S. agalactiae, S. pseudoporcinus and S. equi showed IgG subtype specificity, i.e. IgdE from S. agalactiae and S. pseudoporcinus cleaved human IgG1, while IgdE from S. equi was subtype specific for equine IgG7. Porcine IgG subtype specificities of the IgdE family proteases of S. porcinus and S. pseudoporcinus remain to be determined. Cleavage of porcine IgG by IgdE of S. pseudoporcinus is suggested to be an evolutionary remaining activity reflecting ancestry of the human pathogen to the porcine pathogen S. porcinus. The IgG subtype specificity of bacterial proteases indicates the special importance of these IgG subtypes in counteracting infection or colonization and opportunistic streptococci neutralize such antibodies through expression of IgdE family proteases as putative immune evasion factors. We suggest that IgdE family proteases might be valid vaccine targets against streptococci of both human and veterinary medical concerns and could also be of therapeutic as well as biotechnological use

    Differential Virulence Gene Expression of Group A Streptococcus Serotype M3 in Response to Co-Culture with Moraxella catarrhalis

    Get PDF
    Streptococcus pyogenes (group A Streptococcus, GAS) and Moraxella catarrhalis are important colonizers and (opportunistic) pathogens of the human respiratory tract. However, current knowledge regarding colonization and pathogenic potential of these two pathogens is based on work involving single bacterial species, even though the interplay between respiratory bacterial species is increasingly important in niche occupation and the development of disease. Therefore, to further define and understand polymicrobial species interactions, we investigated whether gene expression (and hence virulence potential) of GAS would be affected upon co-culture with M. catarrhalis. For co-culture experiments, GAS and M. catarrhalis were cultured in Todd-Hewitt broth supplemented with 0.2% yeast extract (THY) at 37°C with 5% CO2aeration. Each strain was grown in triplicate so that triplicate experiments could be performed. Bacterial RNA was isolated, cDNA synthesized, and microarray transcriptome expression analysis performed. We observed significantly increased (≥4-fold) expression for genes playing a role in GAS virulence such as hyaluronan synthase (hasA), streptococcal mitogenic exotoxin Z (smeZ) and IgG endopeptidase (ideS). In contrast, significantly decreased (≥4-fold) expression was observed in genes involved in energy metabolism and in 12 conserved GAS two-component regulatory systems. This study provides the first evidence that M. catarrhalis increases GAS virulence gene expression during co-culture, and again shows the importance of polymicrobial infections in directing bacterial virulence

    Effects of Streptococcus pneumoniae Strain Background on Complement Resistance

    Get PDF
    Background: Immunity to infections caused by Streptococcus pneumoniae is dependent on complement. There are wide variations in sensitivity to complement between S. pneumoniae strains that could affect their ability to cause invasive infections. Although capsular serotype is one important factor causing differences in complement resistance between strains, there is also considerable other genetic variation between S. pneumoniae strains that may affect complement-mediated immunity. We have therefore investigated whether genetically distinct S. pneumoniae strains with the same capsular serotype vary in their sensitivity to complement mediated immunity.Methodology and Principal Findings: C3b/iC3b deposition and neutrophil association were measured using flow cytometry assays for S. pneumoniae strains with different genetic backgrounds for each of eight capsular serotypes. For some capsular serotypes there was marked variation in C3b/iC3b deposition between different strains that was independent of capsule thickness and correlated closely to susceptibility to neutrophil association. C3b/iC3b deposition results also correlated weakly with the degree of IgG binding to each strain. However, the binding of C1q (the first component of the classical pathway) correlated more closely with C3b/iC3b deposition, and large differences remained in complement sensitivity between strains with the same capsular serotype in sera in which IgG had been cleaved with IdeS.Conclusions: These data demonstrate that bacterial factors independent of the capsule and recognition by IgG have strong effects on the susceptibility of S. pneumoniae to complement, and could therefore potentially account for some of the differences in virulence between strains

    In vivo enzymatic modulation of IgG glycosylation inhibits autoimmune disease in an IgG subclass-dependent manner

    No full text
    IgG antibodies are potent inducers of proinflammatory responses. During autoimmune diseases such as arthritis and systemic lupus erythematosus, IgG autoantibodies are responsible for the chronic inflammation and destruction of healthy tissues by cross-linking Fc receptors on innate immune effector cells. The sugar moiety attached to the asparagine-297 residue in the constant domain of the antibody is critical for the overall structure and function of the molecule. Removal of this sugar domain leads to the loss of the proinflammatory activity, suggesting that in vivo modulation of antibody glycosylation might be a strategy to interfere with autoimmune processes. In this work, we investigated whether removal of the majority of the IgG-associated sugar domain by endoglycosidase S (EndoS) from Streptococcus pyogenes is able to interfere with autoimmune inflammation. We demonstrate that EndoS injection efficiently removes the IgG-associated sugar domain in vivo and interferes with autoantibody-mediated proinflammatory processes in a variety of autoimmune models. Importantly, however, we observed a differential impact of EndoS-mediated sugar side chain hydrolysis on IgG activity depending on the individual IgG subclass
    corecore