7,243 research outputs found

    The Effect of Article 10bis of the Paris Convention on American Unfair Competition Law

    Get PDF

    The Effect of Article 10bis of the Paris Convention on American Unfair Competition Law

    Get PDF

    Periodicities In The X-Ray Intensity Variations of TV Columbae: An Intermediate Polar

    Get PDF
    We present results from a temporal analysis of the longest and the most sensitive X-ray observations of TV Columbae--an intermediate polar. The observations were carried out with the RXTE PCA, ROSAT PSPC, and ASCA. Data were analyzed using a 1-dimensional CLEAN and Bayesian algorithms. The presence of a nearly sinusoidal modulation due to the spin of the white dwarf is seen clearly in all the data, confirming the previous reports based on the EXOSAT data. An improved period of 1909.7+/-2.5s is derived for the spin from the RXTE data.The binary period of 5.5hr is detected unambiguously in X-rays for the first time. Several side-bands due to the interaction of these periods are observed in the power spectra, thereby suggesting contributions from both the disk-fed and the stream-fed accretion for TV Col. The accretion disk could perhaps be precessing as side-bands due to the influence of 4 day period on the orbital period are seen. The presence of a significant power at certain side-bands of the spin frequency indicates that the emission poles are asymmetrically located. The strong power at the orbital side-bands seen in both the RXTE and ROSAT data gives an indication for an absorption site fixed in the orbital frame. Both the spin and the binary modulation are found to be energy-dependent. Increased hardness ratio during a broad dip in the intensity at binary phase of 0.75--1.0 confirms the presence of a strong attenuation due to additional absorbers probably from an impact site of the accretion stream with the disk or magnetosphere. Hardness ratio variations and the energy dependent modulation depth during the spin modulation can be explained by partially covered absorbers in the path of X-ray emission region in the accretion stream.Comment: 34 pages, including 12 figures, Accepted for publication in Astronomical Journal, scheduled for January 2004 issue (vol. 127

    The X-ray properties of the magnetic cataclysmic variable UUColumbae

    Get PDF
    Aims. XMM-Newton observations to determine for the first time the broad-band X-ray properties of the faint, high galactic latitude intermediate polar UUCol are presented. Methods. We performed X-ray timing analysis in different energy ranges of the EPIC cameras, which reveals the dominance of the 863 s white dwarf rotational period. The spin pulse is strongly energy dependent. Weak variabilities at the beat 935 s and at the 3.5 h orbital periods are also observed, but the orbital modulation is detected only below 0.5 keV. Simultaneous UV and optical photometry shows that the spin pulse is anti-phased with respect to the hard X-rays. Analysis of the EPIC and RGS spectra reveals the complexity of the X-ray emission, which is composed of a soft 50 eV black–body component and two optically thin emission components at 0.2 keV and 11 keV strongly absorbed by dense material with an equivalent hydrogen column density of 1023 cm−2 that partially (50%) covers the X-ray source. Results. The complex X-ray and UV/optical temporal behaviour indicates that accretion occurs predominantly (∼80%) via a disc with a partial contribution (∼20%) directly from the stream. The main accreting pole dominates at high energies whilst the secondary pole mainly contributes in the soft X-rays and at lower energies. The bolometric flux ratio of the soft-to-hard X-ray emissions is found to be consistent with the prediction of the standard accretion shock model. We find the white dwarf in UUCol accretes at a low rate and possesses a low magnetic moment. It is therefore unlikely that UUCol will evolve into a moderate field strength polar, so that the soft X-ray intermediate polars still remain an enigmatic small group of magnetic cataclysmic variables

    Newtonian Counterparts of Spin 2 Massless Discontinuities

    Get PDF
    Massive spin 2 theories in flat or cosmological (Λ0\Lambda \ne 0) backgrounds are subject to discontinuities as the masses tend to zero. We show and explain physically why their Newtonian limits do not inherit this behaviour. On the other hand, conventional ``Newtonian cosmology'', where Λ\Lambda is a constant source of the potential, displays discontinuities: e.g. for any finite range, Λ\Lambda can be totally removed.Comment: 6 pages, amplifies the ``Newtonian cosmology'' analysis. To appear as a Class. Quantum Grav. Lette

    On the Orbital Period of the Intermediate Polar 1WGA J1958.2+3232

    Full text link
    Recently, Norton et al. 2002, on the basis of multiwavelength photometry of 1WGA J1958.2+3232, argued that the -1 day alias of the strongest peak in the power spectrum is the true orbital period of the system, casting doubts on the period estimated by Zharikov et al. 2001. We re-analyzed this system using our photometric and spectroscopic data along with the data kindly provided by Andy Norton and confirm our previous finding. After refining our analysis we find that the true orbital period of this binary system is 4.35h.Comment: 4 pages, 5 figures, Accepted for publication in A&A Letter

    Comment on ``Superconducting PrBa_2Cu_3O_x''

    Full text link
    Recently, Zou et al. (Phys. Rev. Lett. 80, 1074, 1998) reported the observation of bulk superconductivity (SC) for a PrBa_2Cu_3O_x (Pr123) single crystal grown by the traveling-solvent floating zone (TSFZ) method. The aim of this Comment is to show the inconsistency of the value of effective magnetic moment \mu_{eff} reported by Zou et al. (2.92\mu_B) with their magnetic susceptibility data. The estimation made directly from their data points gives a considerably smaller value of \mu_{eff}=2.09\mu_B. At the same time the values of mu_{eff}=2.9\mu_B and 3.1\mu_B were obtained for our Pr123 single crystals grown by flux method for H||ab-plane and H||c-axis, respectively. This suggests that Pr occupies only about a half of the RE sites in TSFZ crystal. The other half of the RE sites is occupied most probably by the nonmagnetic Ba. Noteworthy, SC with T_c=43 K was observed earlier for Pr_{0.5}Ca_{0.5}Ba_2Cu_3O_{7-y} thin films. Ba^{2+} has a larger ionic radius than Pr^{3+} and so the substitution of Ba for Pr could give a natural explanation not only for the SC in TSFZ Pr123 but also for the elongation of the distance between the CuO_2 planes observed by Zou et al.Comment: Slightly extended version of Comment accepted to Phys. Rev. Lett. (v.81, N24, 1998), tentatevely to be publ. 14Dec98. 1 page, REVTex; 1 EPS fi
    corecore