80 research outputs found

    Design of an Efficient Pumping Scheme for Mid-IR Dy3+:Ga5Ge20Sb10S65 PCF Fiber Laser

    Get PDF
    This letter illustrates the design of a novel medium infrared (Mid-IR) laser based on a photonic crystal fiber made of dysprosium-doped chalcogenide glass, Dy3+:Ga5Ge20Sb10S65. In order to perform a realistic investigation, the simulation is performed by taking into account the spectroscopic parameters measured on the rare earth-doped glass sample. The simulated results show that an optical beam emission close to 4400-nm wavelength can be obtained by employing two pump beams at 2850 nm (pump #1) and 4092 nm (pump #2) wavelengths. The pump beams can be provided by commercial quantum cascade lasers. As example, for the pump powers of 50 mW (pump #1) and 1 W (pump #2), the input mirror reflectivity of 99%, the output mirror reflectivity of 30%, and the optical cavity length of 50 cm, a signal power close to 350 mW at the wavelength of 4384 nm can be generated. This result indicates that the designed source configuration is feasible for high beam quality Mid-IR light generation and it is efficient enough to find applications in optical free propagation links, optical remote sensing, and medicine

    Dysprosium-doped chalcogenide Master Oscillator Power Amplifier (MOPA) for Mid-IR emission

    Get PDF
    The paper describes the design of a medium infrared fiber laser based on a dysprosium-doped chalcogenide glass Dy3+: Ga5Ge20Sb10S65. To obtain a high efficiency, the fiber laser is followed by an optical amplifier. The optimized optical source exploits a master oscillator power amplifier (MOPA) configuration. The MOPA pump and signal wavelengths are 1709 and 4384 nm, respectively. Spectroscopic parameters measured on preliminary samples of chalcogenide glasses are taken into account to fulfill realistic simulations. The MOPA emission is maximized by applying a particle swarm optimization approach. For the dysprosium concentration 6, Ă—, 1025 ions/m3 and the input pump power of 3 W, an output power of 637 mW can be obtained for optical fiber losses close to 1 dB m-1. The optimized MOPA configuration allows a laser efficiency larger than 21%. By considering the high beam quality provided by photonic crystal fibers, it is a good candidate for medium infrared light generation whose main applications include, but are not limited to, molecular spectroscopy and environmental monitoring

    Structure, nonlinear properties, and photosensitivity of (GeSe2)​100-​x(Sb2Se3)​x glasses

    Get PDF
    International audienceChalcogenide glasses from (GeSe2)​100-​x(Sb2Se3)​x system were synthesized, with x varying from 5 to 70, in order to evaluate the influence of antimony selenide addn. on nonlinear optical properties and photosensitivity. Nonlinear refractive index and two photon absorption coeffs. were measured both at 1064 nm in picosecond regime using the Z-​scan technique and at 1.55 μm in femtosecond regime using an original method based on direct anal. of beam profile change while propagating in the chalcogenide glasses. The study of their photosensitivity at 1.55 μm revealed highly glass compn. dependent behavior and quasi-​photostable compns. have been identified in femtosecond regime. To better understand these characteristics, the evolution of the glass transition temp., d. and structure with the chem. compn. were detd

    Optical and structural properties of new chalcohalide glasses

    Get PDF
    New class of chalcohalide glasses has been prepared in the GeS2–In2S3–CsI system with regard to their potential non-linear properties. The study of glass-forming region was undertaken to select glassy compositions, which present high non-linear (NL) optical properties with a low two-photon absorption. Thermal analyses, structural examination by Raman spectroscopy, non-linear optical measurements were investigated as a function of CsI contents. Introduction of CsI has shifted the band-gap edge towards the blue region of the absorption optical spectrum and therefore has limited the two-photon absorption. Their NL refractive index n2 are 60 times higher than silica glasses without any NL absorption. Moreover, second harmonic signal was observed in thermally poled samples similar to silica glass. However, this second order non-linearity is not temporally stable
    • …
    corecore