617 research outputs found
Averaging out magnetic forces with fast rf-sweeps in an optical trap for metastable chromium atoms
We introduce a novel type of time-averaged trap, in which the internal state
of the atoms is rapidly modulated to modify magnetic trapping potentials. In
our experiment, fast radiofrequency (rf) linear sweeps flip the spin of atoms
at a fast rate, which averages out magnetic forces. We use this procedure to
optimize the accumulation of metastable chomium atoms into an optical dipole
trap from a magneto-optical trap. The potential experienced by the metastable
atoms is identical to the bare optical dipole potential, so that this procedure
allows for trapping all magnetic sublevels, hence increasing by up to 80
percent the final number of accumulated atoms.Comment: 4 pages, 4 figure
Modelling spatial distributions of alpine vegetation : a graph theory approach to delineate ecologically-consistent species assemblages
This work was partly funded by the French Ministry of Ecology, Sustainable Development and Energy in support of the development of the CARHab project (2011-2015) on mapping the terrestrial habitats of France. In addition, this work benefited from a synergy with the Divgrass project (Plant Functional Diversity of Permanent Grasslands) (CESAB/FRB funded, France).Safeguarding biodiversity has been one of the most important issues on the environmental and forest policies agenda since the 1990's. The problem remains in terms of decisions and knowledge on where to set appropriate conservation targets. Hence, we need detailed and reliable information about habitat structure and composition and methods for estimating this information over the whole spatial domain. In answer to this target, in France, the Ministry of Ecology launched an ambitious project to map the terrestrial vegetation at a scale of 1:25 000 known as CarHab. This project initiated in 2011, will be used as a strategic spatial planning tool in answer to key issues in relation to biodiversity, conservation, green infrastructures and to report on the conservation status of habitats and species of community interest. We use species-distribution models (SDMs) to identify areas that are ecologically suitable for the presence of species based on specific habitat characteristics. Available techniques using graph theory enable identification of groups of species (assemblages) based on ecological affinities. Species co-occurrences (present within the same assessment plot), revealing a shared ecological niche, are analysed using algorithms derived from graph theory in order to define different nodes of species affinities. Thus, the resulting assemblages are based on ecological similarities. Hence, these assemblages are used to develop models of the potential distribution of alpine vegetation communities. The BIOMOD platform is used to facilitate the simultaneous implementation of different modelling approaches that can be compared in order to choose the most suitable and accurate for each species assemblage obtained from graph theory. Using the different relevant spatially explicit results provides a more comprehensive vision of the communities' spatial distributions.PostprintPeer reviewe
Enhanced nonlinear spectral compression in fiber by external sinusoidal phase modulation
We propose a new, simple approach to enhance the spectral compression process arising from nonlinear pulse propagation in an optical fiber. We numerically show that an additional sinusoidal temporal phase modulation of the pulse enables efficient reduction of the intensity level of the side lobes in the spectrum that are produced by the mismatch between the initial linear negative chirp of the pulse and the self-phase modulation-induced nonlinear positive chirp. Remarkable increase of both the extent of spectrum narrowing and the quality of the compressed spectrum is afforded by the proposed approach across a wide range of experimentally accessible parameters
Radial orbit instability: review and perspectives
This paper presents elements about the radial orbit instability, which occurs
in spherical self-gravitating systems with a strong anisotropy in the radial
velocity direction. It contains an overview on the history of radial orbit
instability. We also present the symplectic method we use to explore stability
of equilibrium states, directly related to the dissipation induced instability
mechanism well known in theoretical mechanics and plasma physics.Comment: 10 pages, submitted to Transport Theory and Statistical Physics,
proceedings of Vlasovia 2009 International Conference. Corrected for typos,
redaction, and references adde
Plant RNases T2, but not Dicer-like proteins, are major players of tRNA-derived fragments biogenesis
RNA fragments deriving from tRNAs (tRFs) exist in all branches of life and the repertoire of their biological functions regularly increases. Paradoxically, their biogenesis remains unclear. The human RNase A, Angiogenin, and the yeast RNase T2, Rny1p, generate long tRFs after cleavage in the anticodon region. The production of short tRFs after cleavage in the D or T regions is still enigmatic. Here, we show that the Arabidopsis Dicer-like proteins, DCL1-4, do not play a major role in the production of tRFs. Rather, we demonstrate that the Arabidopsis RNases T2, called RNS, are key players of both long and short tRFs biogenesis. Arabidopsis RNS show specific expression profiles. In particular, RNS1 and RNS3 are mainly found in the outer tissues of senescing seeds where they are the main endoribonucleases responsible of tRNA cleavage activity for tRFs production. In plants grown under phosphate starvation conditions, the induction of RNS1 is correlated with the accumulation of specific tRFs. Beyond plants, we also provide evidence that short tRFs can be produced by the yeast Rny1p and that, in vitro, human RNase T2 is also able to generate long and short tRFs. Our data suggest an evolutionary conserved feature of these enzymes in eukaryotes
A CDCL-style calculus for solving non-linear constraints
In this paper we propose a novel approach for checking satisfiability of
non-linear constraints over the reals, called ksmt. The procedure is based on
conflict resolution in CDCL style calculus, using a composition of symbolical
and numerical methods. To deal with the non-linear components in case of
conflicts we use numerically constructed restricted linearisations. This
approach covers a large number of computable non-linear real functions such as
polynomials, rational or trigonometrical functions and beyond. A prototypical
implementation has been evaluated on several non-linear SMT-LIB examples and
the results have been compared with state-of-the-art SMT solvers.Comment: 17 pages, 3 figures; accepted at FroCoS 2019; software available at
<http://informatik.uni-trier.de/~brausse/ksmt/
Validating atlas-based lesion disconnectomics in multiple sclerosis: A retrospective multi-centric study.
The translational potential of MR-based connectivity modelling is limited by the need for advanced diffusion imaging, which is not part of clinical protocols for many diseases. In addition, where diffusion data is available, brain connectivity analyses rely on tractography algorithms which imply two major limitations. First, tracking algorithms are known to be sensitive to the presence of white matter lesions and therefore leading to interpretation pitfalls and poor inter-subject comparability in clinical applications such as multiple sclerosis. Second, tractography quality is highly dependent on the acquisition parameters of diffusion sequences, leading to a trade-off between acquisition time and tractography precision. Here, we propose an atlas-based approach to study the interplay between structural disconnectivity and lesions without requiring individual diffusion imaging. In a multi-centric setting involving three distinct multiple sclerosis datasets (containing both 1.5 T and 3 T data), we compare our atlas-based structural disconnectome computation pipeline to disconnectomes extracted from individual tractography and explore its clinical utility for reducing the gap between radiological findings and clinical symptoms in multiple sclerosis. Results using topological graph properties showed that overall, our atlas-based disconnectomes were suitable approximations of individual disconnectomes from diffusion imaging. Small-worldness was found to decrease for larger total lesion volumes thereby suggesting a loss of efficiency in brain connectivity of MS patients. Finally, the global efficiency of the created brain graph, combined with total lesion volume, allowed to stratify patients into subgroups with different clinical scores in all three cohorts
Molecular characterisation of Staphylococcus aureus strains isolated from small and large ruminants reveals a host rather than tissue specificity.
International audienceStaphylococcus aureus is an important pathogen in domestic ruminants. The main objective of this study was to determine the similarity of epidemiologically unrelated S. aureus isolates from bovine, ovine, and caprine hosts regardless the locus of isolation (nares and udder). By pulsed-field gel electrophoresis, seven major pulsotypes were identified among 153 isolates recovered from 12 different regions of France as well as from Brazil, the USA and Belgium. Typing of the accessory gene regulator (agr) and capsular (cap) serotype was carried out on all the isolates and revealed the predominance of agr I and III and of cap8 regardless the ruminant host species. Screening for methicilin-resistant S. aureus (MRSA) was carried out by disk diffusion and revealed a prevalence of only 3.2% of MRSA among the strains tested. These results suggest the existence of a host rather than tissue specificity among S. aureus isolates colonising the ruminant species and suggest a limited transmission of those isolates between large (bovine) and small (ovine-caprine) ruminants. The agr class and cap types correlated with pulsotype clusters rather than with a specific host species. Antimicrobial resistance appears not to have contributed to the predominance of any given genotypes, and MRSA prevalence appears very low in ruminant isolates
Multi-objective Optimization of Solid Oxide Fuel Cell–Gas Turbine Hybrid Cycle and Uncertainty Analysis
Chemical process optimization problems often have multiple and conflicting objectives, such as capital cost, operating cost, production cost, profit, energy consumption and environmental impact. There are several conversion technologies that can convert Synthetic Natural Gas (SNG) into power, heat and electricity; of these, Solid Oxide Fuel Cell with Gas Turbine (SOFC-GT) has shown higher thermodynamic performance. In this study, design and operation of SOFC-GT is optimized for levelized electricity cost and annualized capital cost per kWh, simultaneously. The final selection of a solution from the obtained Pareto-optimal front depends on its sensitivity to the uncertain parameters, such as fuel and product prices, plant life and operating time. Practitioners are mainly interested in selecting one or few robust solutions which are less sensitive to the uncertain parameters, and so the uncertainty analysis of the obtained non-dominated solutions may help in identifying robust solutions. In this study, effect of several uncertain operating and market parameters namely, yearly operation, economic life time, interest rate, fuel cell capital cost factor, electricity price, oxygen price and SNG price, is studied on the performance of SOFC-GT system. The uncertainty analysis is able to idetify most promising non-dominated solutions, based on the levelized electriicty cost as main decision crieriton
Synthesis and parameter optimization of a combined sugar and ethanol production process integrated with a CHP system
The combined sugar and ethanol production process from sugar cane is a paradigmatic application for energy integration strategies because of the high number of hot and cold streams involved, the external hot utility requirement at two temperature levels for juice evaporation and crystallization, and the electricity demand for juice extraction by milling. These conditions make it convenient to combine the sugar-cane process with a CHP system fuelled by bagasse, the main by-product from juice extraction. The strategies, tools and expertise on energy integration developed separately by the research teams authoring this paper are applied here jointly to optimize the synthesis and the design parameters of the process and of the total site starting from the basic idea of dissociating the heat exchanger network design problem from the total site synthesis problem. At first the minimization of the external heat requirement for the process alone is pursued and results show that a one third reduction can be achieved by optimal heat integration. Then the use of the by-product bagasse for on-site power generation is considered and two bagasse-fuelled CHP systems are optimized along with some parts of the sugar and ethanol production process in order to obtain maximum total site net power. Results show a variety of interesting scenarios of combined sugar, ethanol and electricity production plants with considerably high electricity output
- …