33 research outputs found

    SCI1 Is a Direct Target of AGAMOUS and WUSCHEL and Is Specifically Expressed in the Floral Meristematic Cells

    Get PDF
    The specified floral meristem will develop a pre-established number of floral organs and, thus, terminate the floral meristematic cells. The floral meristematic pool of cells is controlled, among some others, by WUSCHEL (WUS) and AGAMOUS (AG) transcription factors (TFs). Here, we demonstrate that the SCI1 (Stigma/style cell-cycle inhibitor 1) gene, a cell proliferation regulator, starts to be expressed since the floral meristem specification of Nicotiana tabacum and is expressed in all floral meristematic cells. Its expression is higher in the floral meristem and the organs being specified, and then it decreases from outside to inside whorls when the organs are differentiating. SCI1 is co-expressed with N. tabacum WUSCHEL (NtWUS) in the floral meristem and the whorl primordia at very early developmental stages. Later in development, SCI1 is co-expressed with NAG1 (N. tabacum AG) in the floral meristem and specialized tissues of the pistil. In silico analyses identified cis-regulatory elements for these TFs in the SCI1 genomic sequence. Yeast one-hybrid and electrophoresis mobility shift assay demonstrated that both TFs interact with the SCI1 promoter sequence. Additionally, the luciferase activity assay showed that NAG1 clearly activates SCI1 expression, while NtWUS could not do so. Taken together, our results suggest that during floral development, the spatiotemporal regulation of SCI1 by NtWUS and NAG1 may result in the maintenance or termination of proliferative cells in the floral meristem, respectively

    Molecular phylogeny and timing of diversification in Alpine Rhithrogena (Ephemeroptera: Heptageniidae).

    Get PDF
    BACKGROUND: Larvae of the Holarctic mayfly genus Rhithrogena Eaton, 1881 (Ephemeroptera, Heptageniidae) are a diverse and abundant member of stream and river communities and are routinely used as bio-indicators of water quality. Rhithrogena is well diversified in the European Alps, with a number of locally endemic species, and several cryptic species have been recently detected. While several informal species groups are morphologically well defined, a lack of reliable characters for species identification considerably hampers their study. Their relationships, origin, timing of speciation and mechanisms promoting their diversification in the Alps are unknown. RESULTS: Here we present a species-level phylogeny of Rhithrogena in Europe using two mitochondrial and three nuclear gene regions. To improve sampling in a genus with many cryptic species, individuals were selected for analysis according to a recent DNA-based taxonomy rather than traditional nomenclature. A coalescent-based species tree and a reconstruction based on a supermatrix approach supported five of the species groups as monophyletic. A molecular clock, mapped on the most resolved phylogeny and calibrated using published mitochondrial evolution rates for insects, suggested an origin of Alpine Rhithrogena in the Oligocene/Miocene boundary. A diversification analysis that included simulation of missing species indicated a constant speciation rate over time, rather than any pronounced periods of rapid speciation. Ancestral state reconstructions provided evidence for downstream diversification in at least two species groups. CONCLUSIONS: Our species-level analyses of five gene regions provide clearer definitions of species groups within European Rhithrogena. A constant speciation rate over time suggests that the paleoclimatic fluctuations, including the Pleistocene glaciations, did not significantly influence the tempo of diversification of Alpine species. A downstream diversification trend in the hybrida and alpestris species groups supports a previously proposed headwater origin hypothesis for aquatic insects

    Selective gene silencing by viral delivery of short hairpin RNA

    Get PDF
    RNA interference (RNAi) technology has not only become a powerful tool for functional genomics, but also allows rapid drug target discovery and in vitro validation of these targets in cell culture. Furthermore, RNAi represents a promising novel therapeutic option for treating human diseases, in particular cancer. Selective gene silencing by RNAi can be achieved essentially by two nucleic acid based methods: i) cytoplasmic delivery of short double-stranded (ds) interfering RNA oligonucleotides (siRNA), where the gene silencing effect is only transient in nature, and possibly not suitable for all applications; or ii) nuclear delivery of gene expression cassettes that express short hairpin RNA (shRNA), which are processed like endogenous interfering RNA and lead to stable gene down-regulation. Both processes involve the use of nucleic acid based drugs, which are highly charged and do not cross cell membranes by free diffusion. Therefore, in vivo delivery of RNAi therapeutics must use technology that enables the RNAi therapeutic to traverse biological membrane barriers in vivo. Viruses and the vectors derived from them carry out precisely this task and have become a major delivery system for shRNA. Here, we summarize and compare different currently used viral delivery systems, give examples of in vivo applications, and indicate trends for new developments, such as replicating viruses for shRNA delivery to cancer cells

    Larval description of Drusus muelleri McLachlan, 1868 (Trichoptera : Limnephilidae) with some notes on its ecology and systematic position within the genus Drusus

    No full text
    This paper presents a description of the hitherto unknown larva of Drusus muelleri McLachlan, 1868. Information on the morphological and genetic identification of this species is given, and the most important diagnostic features are illustrated. Its systematic position within genus Drusus is affirmed and some zoogeographical and ecological notes are added

    The Larva of Drusus nigrescens Meyer-Dür, 1875 (Trichoptera: Limnephilidae: Drusinae) with notes on its ecology, genetic differentiation and systematic position

    No full text
    The paper presents a description of the hitherto unknown larva of Drusus nigrescens Meyer-Dür, 1875. Information on the morphological and genetic identification of this species is given, and the most important diagnostic features are illustrated. Its systematic position within the genus Drusus is affirmed and some zoogeographical and ecological notes are added

    Klimawandel

    No full text
    Il est maintenant accepté par une large part de la communauté scientifique que le climat est en train de changer sous l'influence des gaz à effet de serre émis par les activités humaines. Pour la Suisse, cela correspond à une augmentation des températures et à une diminution probable des précipitations estivales.Etant donné le manque de recul et de données historiques précises, l'influence des changements climatiques sur la biodiversité n'est encore connue que d'études ponctuelles limitées à certaines espèces. Celles-ci nous livrent néanmoins des signaux clairs de changement dans la distribution et la phénologie des espèces, généralement cohérents avec les résultats des modèles prédictifs pour le futur.Globalement, les espèces montrent une tendance à migrer vers les altitudes supérieures. Celles qui occupent aujourd'hui les altitudes les plus élevées vont probablement voir leur domaine se rétrécir. De grands risques d'extinction planent donc sur les espèces alpines, pour lesquelles la Suisse a une responsabilité toute particulière. Parallèlement, la diminution des précipitations estivales va augmenter les problèmes de sécheresses, ce qui pourrait conduire, par exemple, à une réduction des forêts en Valais central et à un assèchement prématuré des lieux de ponte des amphibiens. Inversement, certaines espèces thermophiles de basses altitudes pourraient profiter des nouvelles conditions en accroissant leur domaine de répartition, comme déjà observé chez certains insectes.En plus des changements climatiques, d'autres facteurs menacent indirectement les espèces. La forte fragmentation du territoire limitera la capacité des espèces à coloniser de nouveaux territoires par manque de connexions entre les milieux favorables. Un climat plus chaud permettra une intensification de l'agriculture en montagne, accompagnée des effets néfastes déjà bien connus en plaine, ou pourrait favoriser certaines maladies. De plus, les printemps plus précoces décaleront le développement de certaines espèces, ce qui pourrait fortement modifier les interactions entre espèces et les chaînes trophiques.Les conséquences des changements climatiques sur la biodiversité dépendront aussi des décisions prises au niveau national et international et des mesures prises pour la protection du climat. Afin de limiter les pertes, il est important de mettre en place des corridors favorisant la colonisation de nouvelles aires par les espèces et d'utiliser les synergies possibles entre protection de la biodiversité et lutte contre les changements climatiques. De plus, le monitoring des espèces les plus sensibles aidera à développer, avant qu'il ne soit trop tard, les mesures complémentaires nécessaires à leur conservation
    corecore