7,580 research outputs found

    Tuning metamaterials by using amorphous magnetic microwires

    Get PDF
    In this work, we demonstrate theoretically and experimentally the possibility of tuning the electromagnetic properties of metamaterials with magnetic fields by incorporating amorphous magnetic microwires. The large permeability of these wires at microwave frequencies allows tuning the resonance of the metamaterial by using magnetic fields of the order of tens of Oe. We describe here the physical basis of the interaction between a prototypical magnetic metamaterial with magnetic microwires and electromagnetic waves plus providing detailed calculations and experimental results for the case of an array of Split Ring Resonators with Co-based microwires

    The Schro¨\ddot{o}dinger-Poisson equations as the large-N limit of the Newtonian N-body system: applications to the large scale dark matter dynamics

    Get PDF
    In this paper it is argued how the dynamics of the classical Newtonian N-body system can be described in terms of the Schro¨\ddot{o}dinger-Poisson equations in the large NN limit. This result is based on the stochastic quantization introduced by Nelson, and on the Calogero conjecture. According to the Calogero conjecture, the emerging effective Planck constant is computed in terms of the parameters of the N-body system as M5/3G1/2(N/)1/6\hbar \sim M^{5/3} G^{1/2} (N/)^{1/6}, where is GG the gravitational constant, NN and MM are the number and the mass of the bodies, and is their average density. The relevance of this result in the context of large scale structure formation is discussed. In particular, this finding gives a further argument in support of the validity of the Schro¨\ddot{o}dinger method as numerical double of the N-body simulations of dark matter dynamics at large cosmological scales.Comment: Accepted for publication in the Euro. Phys. J.

    Multiparametric Echocardiography Scores for the Diagnosis of Cardiac Amyloidosis

    Get PDF
    OBJECTIVES: This study aimed to investigate the accuracy of a broad range of echocardiographic variables to develop multiparametric scores to diagnose CA in patients with proven light chain (AL) amyloidosis or those with increased heart wall thickness who had amyloid was suspected. We also aimed to further characterize the structural and functional changes associated with amyloid infiltration. BACKGROUND: Cardiac amyloidosis (CA) is a serious but increasingly treatable cause of heart failure. Diagnosis is challenging and frequently unclear at echocardiography, which remains the most often used imaging tool. METHODS: We studied 1,187 consecutive patients evaluated at 3 referral centers for CA and analyzed morphological, functional, and strain-derived echocardiogram parameters with the aim of developing a score-based diagnostic algorithm. Cardiac amyloid burden was quantified by using extracellular volume measurements at cardiac magnetic resonance. RESULTS: A total of 332 patients were diagnosed with AL amyloidosis and 339 patients with transthyretin CA. Concentric remodeling and strain-derived parameters displayed the best diagnostic performance. A multivariable logistic regression model incorporating relative wall thickness, E wave/e' wave ratio, longitudinal strain, and tricuspid annular plane systolic excursion had the greatest diagnostic performance in AL amyloidosis (area under the curve: 0.90; 95% confidence interval: 0.87 to 0.92), whereas the addition of septal apical-to-base ratio yielded the best diagnostic accuracy in the increased heart wall thickness group (area under the curve: 0.80; 95% confidence interval: 0.85 to 0.90). CONCLUSIONS: Specific functional and structural parameters characterize different burdens of CA deposition with different diagnostic performances and enable the definition of 2 scores that are sensitive and specific tools with which diagnose or exclude CA

    Constraints on the minimal supergravity model from the b->s+\gamma decay

    Full text link
    The constraints on the minimal supergravity model from the b->s+\gamma decay are studied. A large domain in the parameter space for the model satisfies the CLEO bound, BR(b->s+\gamma)<5.4X10^{-4}. However, the allowed domain is expected to diminish significantly with an improved bound on this decay. The dependence of the b->s+\gamma branching ratio on various parameters is studied in detail. It is found that, for A_t<0 and the top quark mass within the vicinity of the center of the CDF value, m_t^{pole}=174\pm17 GeV, there exists only a small allowed domain because the light stop is tachyonic for most of the parameter space. A similar phenomenon exists for a lighter top and A_t negative when the GUT coupling constant is slightly reduced. For A_t>0, however, the branching ratio is much less sensitive to small changes in m_t, and \alpha_G.Comment: 12 pages, plain tex file, three figures avaliable upon request, CTP-TAMU-03/94, NUB-TH.7316/94, and CERN-TH.3092/9

    Observation of Pulsed Gamma-rays Above 25 GeV from the Crab Pulsar with MAGIC

    Get PDF
    One fundamental question about pulsars concerns the mechanism of their pulsed electromagnetic emission. Measuring the high-end region of a pulsar's spectrum would shed light on this question. By developing a new electronic trigger, we lowered the threshold of the Major Atmospheric gamma-ray Imaging Cherenkov (MAGIC) telescope to 25 GeV. In this configuration, we detected pulsed gamma-rays from the Crab pulsar that were greater than 25 GeV, revealing a relatively high cutoff energy in the phase-averaged spectrum. This indicates that the emission occurs far out in the magnetosphere, hence excluding the polar-cap scenario as a possible explanation of our measurement. The high cutoff energy also challenges the slot-gap scenario.Comment: Slight modification of the analysis: Fitting a more general function to the combined data set of COMPTEL, EGRET and MAGIC. Final result and conclusion is unchange

    Clinical Risk Score to Predict Pathogenic Genotypes in Patients With Dilated Cardiomyopathy

    Get PDF
    Background: Although genotyping allows family screening and influences risk-stratification in patients with nonischemic dilated cardiomyopathy (DCM) or isolated left ventricular systolic dysfunction (LVSD), its result is negative in a significant number of patients, limiting its widespread adoption. Objectives: This study sought to develop and externally validate a score that predicts the probability for a positive genetic test result (G+) in DCM/LVSD. Methods: Clinical, electrocardiogram, and echocardiographic variables were collected in 1,015 genotyped patients from Spain with DCM/LVSD. Multivariable logistic regression analysis was used to identify variables independently predicting G+, which were summed to create the Madrid Genotype Score. The external validation sample comprised 1,097 genotyped patients from the Maastricht and Trieste registries. Results: A G+ result was found in 377 (37%) and 289 (26%) patients from the derivation and validation cohorts, respectively. Independent predictors of a G+ result in the derivation cohort were: family history of DCM (OR: 2.29; 95% CI: 1.73-3.04; P &lt; 0.001), low electrocardiogram voltage in peripheral leads (OR: 3.61; 95% CI: 2.38-5.49; P &lt; 0.001), skeletal myopathy (OR: 3.42; 95% CI: 1.60-7.31; P = 0.001), absence of hypertension (OR: 2.28; 95% CI: 1.67-3.13; P &lt; 0.001), and absence of left bundle branch block (OR: 3.58; 95% CI: 2.57-5.01; P &lt; 0.001). A score containing these factors predicted a G+ result, ranging from 3% when all predictors were absent to 79% when ≥4 predictors were present. Internal validation provided a C-statistic of 0.74 (95% CI: 0.71-0.77) and a calibration slope of 0.94 (95% CI: 0.80-1.10). The C-statistic in the external validation cohort was 0.74 (95% CI: 0.71-0.78). Conclusions: The Madrid Genotype Score is an accurate tool to predict a G+ result in DCM/LVSD

    Clinical subgroups in bilateral meniere disease

    Get PDF
    Meniere disease (MD) is a heterogeneous clinical condition characterized by sensorineural hearing loss, episodic vestibular symptoms, and tinnitus associated with several comorbidities, such as migraine or autoimmune disorders (AD). The frequency of bilateral involvement may range from 5 to 50%, and it depends on the duration of the disease. We have performed a two-step cluster analysis in 398 patients with bilateral MD (BMD) to identify the best predictors to define clinical subgroups with a potential different etiology to improve the phenotyping of BMD and to develop new treatments. We have defined five clinical variants in BMD. Group 1 is the most frequently found, includes 46% of patients, and is defined by metachronic hearing loss without migraine and without AD. Group 2 is found in 17% of patients, and it is defined by synchronic hearing loss without migraine or AD. Group 3, with 13% of patients, is characterized by familial MD, while group 4, that includes 12% of patients, is associated by the presence of migraine in all cases. Group 5 is found in 11% of patients and is defined by AD. This approach can be helpful in selecting patients for genetic and clinical research. However, further studies will be required to improve the phenotyping in these clinical variants for a better understanding of the diverse etiological factors contributing to BMD
    corecore