98 research outputs found

    Application of advanced computational codes in the design of an experiment for a supersonic throughflow fan rotor

    Get PDF
    Increased emphasis on sustained supersonic or hypersonic cruise has revived interest in the supersonic throughflow fan as a possible component in advanced propulsion systems. Use of a fan that can operate with a supersonic inlet axial Mach number is attractive from the standpoint of reducing the inlet losses incurred in diffusing the flow from a supersonic flight Mach number to a subsonic one at the fan face. The design of the experiment using advanced computational codes to calculate the components required is described. The rotor was designed using existing turbomachinery design and analysis codes modified to handle fully supersonic axial flow through the rotor. A two-dimensional axisymmetric throughflow design code plus a blade element code were used to generate fan rotor velocity diagrams and blade shapes. A quasi-three-dimensional, thin shear layer Navier-Stokes code was used to assess the performance of the fan rotor blade shapes. The final design was stacked and checked for three-dimensional effects using a three-dimensional Euler code interactively coupled with a two-dimensional boundary layer code. The nozzle design in the expansion region was analyzed with a three-dimensional parabolized viscous code which corroborated the results from the Euler code. A translating supersonic diffuser was designed using these same codes

    Calculation of PandP_ and T_ odd effects in $"" sup 205_TIF including electron correlation

    Full text link
    A method and codes for two-step correlation calculation of heavy-atom molecules have been developed, employing the generalized relativistic effective core potential and relativistic coupled cluster (RCC) methods at the first step, followed by nonvariational one-center restoration of proper four-component spinors in the heavy cores. Electron correlation is included for the first time in an ab initio calculation of the interaction of the permanent P,T-odd proton electric dipole moment with the internal electromagnetic field in a molecule. The calculation is performed for the ground state of TlF at the experimental equilibrium, R_e=2.0844 A, and at R=2.1 A, with spin-orbit and correlation effects included by RCC. Calculated results with single cluster amplitudes only are in good agreement (3% and 1%) with recent Dirac-Hartree-Fock (DHF) values of the magnetic parameter M; the larger differences occurring between present and DHF volume parameter (X) values, as well as between the two DHF calculations, are explained. Inclusion of electron correlation by GRECP/RCC with single and double excitations has a major effect on the P,T-odd parameters, decreasing M by 17% and X by 22%.Comment: 5 pages, REVTeX4 style Accepted for publication in Phys.Rev.Letter

    Agrobacterium tumefaciens-Induced Bacteraemia Does Not Lead to Reporter Gene Expression in Mouse Organs

    Get PDF
    Agrobacterium tumefaciens is the main plant biotechnology gene transfer tool with host range which can be extended to non-plant eukaryotic organisms under laboratory conditions. Known medical cases of Agrobacterium species isolation from bloodstream infections necessitate the assessment of biosafety-related risks of A. tumefaciens encounters with mammalian organisms. Here, we studied the survival of A. tumefaciens in bloodstream of mice injected with bacterial cultures. Bacterial titers of 108 CFU were detected in the blood of the injected animals up to two weeks after intravenous injection. Agrobacteria carrying Cauliflower mosaic virus (CaMV) 35S promoter-based constructs and isolated from the injected mice retained their capacity to promote green fluorescent protein (GFP) synthesis in Nicotiana benthamiana leaves. To examine whether or not the injected agrobacteria are able to express in mouse organs, we used an intron-containing GFP (GFPi) reporter driven either by a cytomegalovirus (CMV) promoter or by a CaMV 35S promoter. Western and northern blot analyses as well as RT-PCR analysis of liver, spleen and lung of mice injected with A. tumefaciens detected neither GFP protein nor its transcripts. Thus, bacteraemia induced in mice by A. tumefaciens does not lead to detectible levels of genetic transformation of mouse organs

    Common Peptides Study of Aminoacyl-tRNA Synthetases

    Get PDF
    Aminoacyl tRNA synthetases (aaRSs) constitute an essential enzyme super-family, providing fidelity of the translation process of mRNA to proteins in living cells. They are common to all kingdoms and are of utmost importance to all organisms. It is thus of great interest to understand the evolutionary relationships among them and underline signature motifs defining their common domains.We utilized the Common Peptides (CPs) framework, based on extracted deterministic motifs from all aaRSs, to study family-specific properties. We identified novel aaRS–class related signatures that may supplement the current classification methods and provide a basis for identifying functional regions specific to each aaRS class. We exploited the space spanned by the CPs in order to identify similarities between aaRS families that are not observed using sequence alignment methods, identifying different inter-aaRS associations across different kingdom of life. We explored the evolutionary history of the aaRS families and evolutionary origins of the mitochondrial aaRSs. Lastly, we showed that prevalent CPs significantly overlap known catalytic and binding sites, suggesting that they have meaningful functional roles, as well as identifying a motif shared between aaRSs and a the Biotin-[acetyl-CoA carboxylase] synthetase (birA) enzyme overlapping binding sites in both families.The study presents the multitude of ways to exploit the CP framework in order to extract meaningful patterns from the aaRS super-family. Specific CPs, discovered in this study, may play important roles in the functionality of these enzymes. We explored the evolutionary patterns in each aaRS family and tracked remote evolutionary links between these families

    Extracellular VirB5 Enhances T-DNA Transfer from Agrobacterium to the Host Plant

    Get PDF
    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5—by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell—enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell

    GOPred: GO Molecular Function Prediction by Combined Classifiers

    Get PDF
    Functional protein annotation is an important matter for in vivo and in silico biology. Several computational methods have been proposed that make use of a wide range of features such as motifs, domains, homology, structure and physicochemical properties. There is no single method that performs best in all functional classification problems because information obtained using any of these features depends on the function to be assigned to the protein. In this study, we portray a novel approach that combines different methods to better represent protein function. First, we formulated the function annotation problem as a classification problem defined on 300 different Gene Ontology (GO) terms from molecular function aspect. We presented a method to form positive and negative training examples while taking into account the directed acyclic graph (DAG) structure and evidence codes of GO. We applied three different methods and their combinations. Results show that combining different methods improves prediction accuracy in most cases. The proposed method, GOPred, is available as an online computational annotation tool (http://kinaz.fen.bilkent.edu.tr/gopred)

    Role of Scrib and Dlg in anterior-posterior patterning of the follicular epithelium during Drosophila oogenesis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Proper patterning of the follicle cell epithelium over the egg chamber is essential for the <it>Drosophila </it>egg development. Differentiation of the epithelium into several distinct cell types along the anterior-posterior axis requires coordinated activities of multiple signaling pathways. Previously, we reported that <it>lethal(2)giant larvae </it>(<it>lgl</it>), a <it>Drosophila </it>tumor suppressor gene, is required in the follicle cells for the posterior follicle cell (PFC) fate induction at mid-oogenesis. Here we explore the role of another two tumor suppressor genes, <it>scribble </it>(<it>scrib</it>) and <it>discs large </it>(<it>dlg</it>), in the epithelial patterning.</p> <p>Results</p> <p>We found that removal of <it>scrib </it>or <it>dlg </it>function from the follicle cells at posterior terminal of the egg chamber causes a complete loss of the PFC fate. Aberrant specification and differentiation of the PFCs in the mosaic clones can be ascribed to defects in coordinated activation of the EGFR, JAK and Notch signaling pathways in the multilayered cells. Meanwhile, the clonal analysis revealed that loss-of-function mutations in <it>scrib/dlg </it>at the anterior domains result in a partially penetrant phenotype of defective induction of the stretched and centripetal cell fate, whereas specification of the border cell fate can still occur in the most anterior region of the mutant clones. Further, we showed that <it>scrib </it>genetically interacts with <it>dlg </it>in regulating posterior patterning of the epithelium.</p> <p>Conclusion</p> <p>In this study we provide evidence that <it>scrib </it>and <it>dlg </it>function differentially in anterior and posterior patterning of the follicular epithelium at oogenesis. Further genetic analysis indicates that <it>scrib </it>and <it>dlg </it>act in a common pathway to regulate PFC fate induction. This study may open another window for elucidating role of <it>scrib/dlg </it>in controlling epithelial polarity and cell proliferation during development.</p

    Dynamics of notch pathway expression during mouse testis post-natal development and along the spermatogenic cycle

    Get PDF
    Articles in International JournalsThe transcription and expression patterns of Notch pathway components (Notch 1–3, Delta1 and 4, Jagged1) and effectors (Hes1, Hes2, Hes5 and Nrarp) were evaluated (through RT-PCR and IHC) in the mouse testis at key moments of post-natal development, and along the adult spermatogenic cycle. Notch pathway components and effectors are transcribed in the testis and expressed in germ, Sertoli and Leydig cells, and each Notch component shows a specific cell-type and timewindow expression pattern. This expression at key testis developmental events prompt for a role of Notch signaling in prepubertal spermatogonia quiescence, onset of spermatogenesis, and regulation of the spermatogenic cycle

    More Evidence that Depressive Symptoms Predict Mortality in COPD Patients: Is Type D Personality an Alternative Explanation?

    Get PDF
    The present study attempted to replicate our previous finding that depressive symptoms are a risk factor for mortality in stable chronic obstructive pulmonary disease (COPD), but in a different population with a different measure of depressive symptoms. We further investigated whether type D personality is associated with mortality in patients with COPD and whether it explains any relationship observed between depressive symptoms and mortality. In 122 COPD patients, mean age 60.8 +/- 10.3 years, 52% female, and mean forced expiratory volume in 1 s (FEV(1)) 41.1 +/- 17.6%pred, we assessed body mass index, post bronchodilator FEV(1), exercise capacity, depressive symptoms with the Hospital Anxiety and Depression Scale, and type D with the Type D Scale. In the 7 years follow-up, 48 (39%) deaths occurred. The median survival time was 5.3 years. Depressive symptoms (hazard ratio = 1.07, 95% confidence intervals = 1.00-1.14) were an independent risk factor for mortality. Type D was not associated with mortality. We can rule out type D as an explanation for the relationship between depressive symptoms and mortality observed in this sample. However, ambiguity remains as to the interpretation of the value of depressive symptoms in predicting death
    corecore