74 research outputs found

    A nested circulation model for the North Aegean Sea

    No full text
    International audienceA multi-nested approach has been employed for numerical simulations in the northern part of the Aegean Sea in the framework of the MFSTEP (Mediterranean Forecast System: Toward Environmental Predictions) project. The high resolution (~1.6 km) hydrodynamic model of the North Aegean Sea (NAS) has been nested within a coarser model of the Eastern Mediterranean (resolution ~3.6 km) which is also nested within a basin scale model for the Mediterranean Sea (resolution of ~7 km). The high resolution of the NAS model allows the representation of topographic details that have never been reproduced in modelling studies of the region. Such details can enhance the simulation of coastal features, but can also influence basin-scale processes, such as the pathways of waters of Black Sea origin inflowing at the Dardanelles Straits and bifurcating through island passages. We employ comparisons of the North Aegean and Eastern Mediterranean models in terms of computed flow fields and distribution of hydrodynamic properties, to evaluate the nesting procedure, the initialization requirements and the ability of a nested model to perform reliable short term simulations that employ high resolution atmospheric forcing, when initialized from a coarser OGCM. We show that the topographic details of the high resolution, nested NAS model affect the distribution of the Dardanelles plume and the evolution of coastal currents, while the imposed high frequency, high resolution atmospheric forcing allows for the formation of an overall energetic flow field after a few days of spin-up period. Increased resolution and smaller coastal depth in the NAS simulations influence the flow through island passages and straits. A longer initialization procedure results in the establishment of stronger currents and better-developed buoyant plumes

    Modelling the impact of atmospheric and terrestrial inputs on the Black Sea coastal dynamics

    No full text
    International audienceThe dynamics on the North Western Shelf area of the Black Sea are examined, with an emphasis on the circulation induced by buoyancy due to the land drained fresh waters and by the interaction with the atmosphere, notably wind stress. A three-dimensional, multi-layer hydrodynamic model is employed with realistic topography and parameterisation of river plume physics. We focus on the seasonal patterns of transport of the river induced low-salinity waters within the Coastal Low Salinity Band and the conditions that influence their removal toward the shelf interior. The numerical simulations show that coastal circulation is greatly influenced by river runoff and especially in the case of the Danube, which is excessively high with monthly aver-aged values ranging from 5000 to 10000 m3 /s. A significant contribution of runoff comes from the neighbouring rivers. At the same time, the North Western Shelf is quite broad, so that the coastal dynamics are largely sheltered from the conditions in the deeper sea. Buoyancy due to river runoff thus dominates, creating a southward coastal current that is the predominant pathway for the land-drained inputs. As in all shelf areas, wind stress is a major circulation forcing mechanism and it modifies the buoyancy induced flow. It is shown that the seasonal variability in river runoff and wind stress, in combination with the shelf topography, determines the different pathways for the terrestrial inputs. Implications on the overall basin circulation are drawn, as the availability of low-salinity waters of river origin affects the upper Black Sea layer. Consequently, the formation of distinct water masses (such as the Cold Intermediate Layer) and the properties of the outflow toward the Mediterranean are also influenced

    A nested circulation model for the North Aegean Sea

    No full text
    International audienceA multi-nested approach has been employed for numerical simulations in the northern part of the Aegean Sea in the framework of the MFSTEP (Mediterranean Forecast System: Toward Environmental Predictions) project. The high resolution (~1.6 km) hydrodynamic model of the North Aegean Sea (NAS) has been nested within a coarser model of the Eastern Mediterranean (resolution ~3.6 km) which is also nested within a basin scale model for the Mediterranean Sea (resolution of ~7 km). The high resolution of the NAS model allows the representation of topographic details that have never been reproduced in modelling studies of the region. Such details can enhance the simulation of coastal features, but can also influence basin-scale processes, such as the pathways of waters of Black Sea origin inflowing at the Dardanelles Straits and bifurcating through island passages. We employ comparisons of the North Aegean and Eastern Mediterranean models in terms of computed flow fields and distribution of hydrodynamic properties, to evaluate the nesting procedure, the initialization requirements and the ability of a nested model to perform reliable short term simulations that employ high resolution atmospheric forcing, when initialized from a longer running coarser OGCM. We show that the topographic details of the high resolution, nested NAS model mostly affect the distribution of the Dardanelles plume, while the imposed high frequency, high resolution atmospheric forcing allows for the formation of an overall energetic flow field after a few days of spin-up period. A longer initialization procedure is suggested for the establishment of stronger currents and better developed buoyant plumes

    Numerical studies on the dynamics of the Northwestern Black Sea shelf

    Get PDF
    The Northwestern Black Sea shelf dynamics are studied with numerical simulations based on the Princeton Ocean Model. The study focus is on buoyancy and wind driven flows and on the transport and fate of low salinity waters that are introduced through riverine sources (the Danube, Dnestr and Dnepr Rivers), under the seasonal changes in atmospheric forcing. The study is part of the DANUBS project (NUtrient management in the DAnube basin and its impact on the Black Sea). The numerical simulations show that the coastal circulation is greatly influenced by river runoff and especially that of the Danube, which is dominant with monthly averaged values ranging from 5,000 m3 to 10,000 m3. The transport of low-salinity waters associated with the Danube runoff is greatly influenced by wind stress, topographic effects and basin-scale circulation patterns, such as changes in the position of the Rim Current

    Influence of Dardanelles outflow induced thermal fronts and winds on drifter trajectories in the Aegean Sea

    Get PDF
    The data provided by 12 drifters deployed in the Northern Aegean Sea in the vicinity of the Dardanelles Strait in August 2008 and February 2009 are used to explore the surface circulation of the basin and the connectivity to the Black Sea. The drifters were deployed within the Dardanelles outflow of waters of Black Sea origin in the Northeastern Aegean. Thanks to the particular choice of the drifter deployment positions, the data set provides a unique opportunity to observe the branching behaviour of the surface currents around Lemnos Island. Such pathways were notpossible to study with previous drifter deployments that were far from the Dardanelles Strait. In addition, the drifter tracks covered the Aegean basin quite thoroughly, mapping major circulation features and supporting the overall general circulation patterns described by previous observational and modelling studies. The collected data display cases in which drifters are driven by winds and thermal fronts. Wind products were used to estimate the influence of the atmospheric forcing on the drifter trajectories. Satellite sea surface temperature images were connected to the drifter tracks, demonstrating a high correlation between the remote and in situ observations. The waters of Black Sea origin were traced all the way to the Southern Aegean, establishing a strong connectivity link between the Aegean and Black Sea basins

    Influence of frontal cyclone evolution on the 2009 (Ekman) and 2010 (Franklin) Loop Current eddy detachment events

    Get PDF
    The anticyclonic Loop Current Eddy (LCE) shedding events are strongly associated with the evolution of Loop Current Frontal Eddies (LCFEs) over the eastern Gulf of Mexico (GoM). A numerical simulation, in tandem with in situ measurements and satellite data, was used to investigate the Loop Current (LC) evolution and the surrounding LCFE formation, structure, growth and migration during the Eddy Ekman and Eddy Franklin shedding events in the summers of 2009 and 2010, respectively. During both events, northern GoM LCFEs appeared vertically coherent to at least 1500 m in temperature observations. They propagated towards the base of the LC, where, together with the migration of Campeche Bank (southwest GoM shelf) eddies from south of the LC, contributed to its "necking-down". Growth of Campeche Bank LCFEs involved in Eddy Franklin was partially attributed to Campeche Bank waters following upwelling events. Slope processes associated with such upwelling included offshore exports of high positive potential vorticity that may trigger cyclone formation and growth. The advection and growth of LCFEs, originating from the northern and southern GoM, and their interaction with the LC over the LCE detachment area favor shedding conditions and may contribute to the final separation of the LCE

    Coastal Ocean Forecasting: science foundation and user benefits

    Get PDF
    The advancement of Coastal Ocean Forecasting Systems (COFS) requires the support of continuous scientific progress addressing: (a) the primary mechanisms driving coastal circulation; (b) methods to achieve fully integrated coastal systems (observations and models), that are dynamically embedded in larger scale systems; and (c) methods to adequately represent air-sea and biophysical interactions. Issues of downscaling, data assimilation, atmosphere-wave-ocean couplings and ecosystem dynamics in the coastal ocean are discussed. These science topics are fundamental for successful COFS, which are connected to evolving downstream applications, dictated by the socioeconomic needs of rapidly increasing coastal populations

    Assessing the impact of observations on ocean forecasts and reanalyses: Part 2, Regional applications

    Get PDF
    The value of global (e.g., altimetry, satellite sea-surface temperature, Argo) and regional (e.g., radars, gliders, instrumented mammals, airborne profiles, biogeochemical) observation-types for monitoring the mesoscale ocean circulation and biogeochemistry is demonstrated using a suite of global and regional prediction systems and remotely-sensed data. A range of techniques is used to demonstrate the value of different observation-types to regional systems and the benefit of high- resolution and adaptive sampling for monitoring the mesoscale circulation. The techniques include Observing System Experiments, Observing System Simulation Experiments, adjoint sensitivities, representer matrix spectrum, observation footprints, information content and spectral analysis. It is shown that local errors in global and basin-scale systems can be significantly reduced when assimilating observations from regional observing systems
    corecore