99 research outputs found

    Modeling the clonal heterogeneity of stem cells

    Get PDF
    Recent experimental studies suggest that tissue stem cell pools are composed of functionally diverse clones. Metapopulation models in ecology concentrate on collections of populations and their role in stabilizing coexistence and maintaining selected genetic or epigenetic variation. Such models are characterized by expansion and extinction of spatially distributed populations. We develop a mathematical framework derived from the multispecies metapopulation model of Tilman et al (1994) to study the dynamics of heterogeneous stem cell metapopulations. In addition to normal stem cells, the model can be applied to cancer cell populations and their response to treatment. In our model disturbances may lead to expansion or contraction of cells with distinct properties, reflecting proliferation, apoptosis, and clonal competition. We first present closed-form expressions for the basic model which defines clonal dynamics in the presence of exogenous global disturbances. We then extend the model to include disturbances which are periodic and which may affect clones differently. Within the model framework, we propose a method to devise an optimal strategy of treatments to regulate expansion, contraction, or mutual maintenance of cells with specific properties

    Phytoplankton competition in deep biomass maximum

    Full text link
    Resource competition in heterogeneous environments is still an unresolved problem of theoretical ecology. In this article I analyze competition between two phytoplankton species in a deep water column, where the distributions of main resources (light and a limiting nutrient) have opposing gradients and co-limitation by both resources causes a deep biomass maximum. Assuming that the species have a trade-off in resource requirements and the water column is weakly mixed, I apply the invasion threshold analysis (Ryabov and Blasius 2011) to determine relations between environmental conditions and phytoplankton composition. Although species deplete resources in the interior of the water column, the resource levels at the bottom and surface remain high. As a result, the slope of resources gradients becomes a new crucial factor which, rather than the local resource values, determines the outcome of competition. The value of resource gradients nonlinearly depend on the density of consumers. This leads to complex relationships between environmental parameters and species composition. In particular, it is shown that an increase of both the incident light intensity or bottom nutrient concentrations favors the best light competitors, while an increase of the turbulent mixing or background turbidity favors the best nutrient competitors. These results might be important for prediction of species composition in deep ocean.Comment: 13 pages, 7 figures; Theoretical Ecology 201

    Moving interdisciplinary science forward: integrating participatory modelling with mathematical modelling of zoonotic disease in Africa

    Get PDF
    This review outlines the benefits of using multiple approaches to improve model design and facilitate multidisciplinary research into infectious diseases, as well as showing and proposing practical examples of effective integration. It looks particularly at the benefits of using participatory research in conjunction with traditional modelling methods to potentially improve disease research, control and management. Integrated approaches can lead to more realistic mathematical models which in turn can assist with making policy decisions that reduce disease and benefit local people. The emergence, risk, spread and control of diseases are affected by many complex bio-physical, environmental and socio-economic factors. These include climate and environmental change, land-use variation, changes in population and people’s behaviour. The evidence base for this scoping review comes from the work of a consortium, with the aim of integrating modelling approaches traditionally used in epidemiological, ecological and development research. A total of five examples of the impacts of participatory research on the choice of model structure are presented. Example 1 focused on using participatory research as a tool to structure a model. Example 2 looks at identifying the most relevant parameters of the system. Example 3 concentrates on identifying the most relevant regime of the system (e.g., temporal stability or otherwise), Example 4 examines the feedbacks from mathematical models to guide participatory research and Example 5 goes beyond the so-far described two-way interplay between participatory and mathematical approaches to look at the integration of multiple methods and frameworks. This scoping review describes examples of best practice in the use of participatory methods, illustrating their potential to overcome disciplinary hurdles and promote multidisciplinary collaboration, with the aim of making models and their predictions more useful for decision-making and policy formulation

    Multifractal Spatial Patterns and Diversity in an Ecological Succession

    Get PDF
    We analyzed the relationship between biodiversity and spatial biomass heterogeneity along an ecological succession developed in the laboratory. Periphyton (attached microalgae) biomass spatial patterns at several successional stages were obtained using digital image analysis and at the same time we estimated the species composition and abundance. We show that the spatial pattern was self-similar and as the community developed in an homogeneous environment the pattern is self-organized. To characterize it we estimated the multifractal spectrum of generalized dimensions Dq. Using Dq we analyze the existence of cycles of heterogeneity during succession and the use of the information dimension D1 as an index of successional stage. We did not find cycles but the values of D1 showed an increasing trend as the succession developed and the biomass was higher. D1 was also negatively correlated with Shannon's diversity. Several studies have found this relationship in different ecosystems but here we prove that the community self-organizes and generates its own spatial heterogeneity influencing diversity. If this is confirmed with more experimental and theoretical evidence D1 could be used as an index, easily calculated from remote sensing data, to detect high or low diversity areas

    Challenges in developing methods for quantifying the effects of weather and climate on water-associated diseases: A systematic review

    Get PDF
    Infectious diseases attributable to unsafe water supply, sanitation and hygiene (e.g. Cholera, Leptospirosis, Giardiasis) remain an important cause of morbidity and mortality, especially in low-income countries. Climate and weather factors are known to affect the transmission and distribution of infectious diseases and statistical and mathematical modelling are continuously developing to investigate the impact of weather and climate on water-associated diseases. There have been little critical analyses of the methodological approaches. Our objective is to review and summarize statistical and modelling methods used to investigate the effects of weather and climate on infectious diseases associated with water, in order to identify limitations and knowledge gaps in developing of new methods. We conducted a systematic review of English-language papers published from 2000 to 2015. Search terms included concepts related to water-associated diseases, weather and climate, statistical, epidemiological and modelling methods. We found 102 full text papers that met our criteria and were included in the analysis. The most commonly used methods were grouped in two clusters: process-based models (PBM) and time series and spatial epidemiology (TS-SE). In general, PBM methods were employed when the bio-physical mechanism of the pathogen under study was relatively well known (e.g. Vibrio cholerae); TS-SE tended to be used when the specific environmental mechanisms were unclear (e.g. Campylobacter). Important data and methodological challenges emerged, with implications for surveillance and control of water-associated infections. The most common limitations comprised: non-inclusion of key factors (e.g. biological mechanism, demographic heterogeneity, human behavior), reporting bias, poor data quality, and collinearity in exposures. Furthermore, the methods often did not distinguish among the multiple sources of time-lags (e.g. patient physiology, reporting bias, healthcare access) between environmental drivers/exposures and disease detection. Key areas of future research include: disentangling the complex effects of weather/climate on each exposure-health outcome pathway (e.g. person-to-person vs environment-to-person), and linking weather data to individual cases longitudinally

    The influence of balanced and imbalanced resource supply on biodiversity – functioning relationship across ecosystems

    Get PDF
    Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity

    Interaction Effects of Light, Temperature and Nutrient Limitations (N, P and Si) on Growth, Stoichiometry and Photosynthetic Parameters of the Cold-Water Diatom Chaetoceros wighamii

    Get PDF
    Light (20-450 mu mol photons m(-2) s(-1)), temperature (3-11 degrees C) and inorganic nutrient composition (nutrient replete and N, P and Si limitation) were manipulated to study their combined influence on growth, stoichiometry (C:N:P:Chl a) and primary production of the cold water diatom Chaetoceros wighamii. During exponential growth, the maximum growth rate (similar to 0.8 d(-1)) was observed at high temperture and light; at 3 degrees C the growth rate was similar to 30% lower under similar light conditions. The interaction effect of light and temperature were clearly visible from growth and cellular stoichiometry. The average C:N:P molar ratio was 80:13:1 during exponential growth, but the range, due to different light acclimation, was widest at the lowest temperature, reaching very low C:P (similar to 50) and N:P ratios (similar to 8) at low light and temperature. The C:Chl a ratio had also a wider range at the lowest temperature during exponential growth, ranging 16-48 (weight ratio) at 3 degrees C compared with 17-33 at 11 degrees C. During exponential growth, there was no clear trend in the Chl a normalized, initial slope (alpha*) of the photosynthesis-irradiance (PE) curve, but the maximum photosynthetic production (P-m) was highest for cultures acclimated to the highest light and temperature. During the stationary growth phase, the stoichiometric relationship depended on the limiting nutrient, but with generally increasing C:N:P ratio. The average photosynthetic quotient (PQ) during exponential growth was 1.26 but decreased toPeer reviewe

    JAK1/2 inhibition with baricitinib in the treatment of autoinflammatory interferonopathies

    Get PDF
    BACKGROUND. Monogenic IFN–mediated autoinflammatory diseases present in infancy with systemic inflammation, an IFN response gene signature, inflammatory organ damage, and high mortality. We used the JAK inhibitor baricitinib, with IFN-blocking activity in vitro, to ameliorate disease. METHODS. Between October 2011 and February 2017, 10 patients with CANDLE (chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperatures), 4 patients with SAVI (stimulator of IFN genes–associated [STING-associated] vasculopathy with onset in infancy), and 4 patients with other interferonopathies were enrolled in an expanded access program. The patients underwent dose escalation, and the benefit was assessed by reductions in daily disease symptoms and corticosteroid requirement. Quality of life, organ inflammation, changes in IFN-induced biomarkers, and safety were longitudinally assessed. RESULTS. Eighteen patients were treated for a mean duration of 3.0 years (1.5–4.9 years). The median daily symptom score decreased from 1.3 (interquartile range [IQR], 0.93–1.78) to 0.25 (IQR, 0.1–0.63) (P < 0.0001). In 14 patients receiving corticosteroids at baseline, daily prednisone doses decreased from 0.44 mg/kg/day (IQR, 0.31–1.09) to 0.11 mg/kg/day (IQR, 0.02–0.24) (P < 0.01), and 5 of 10 patients with CANDLE achieved lasting clinical remission. The patients’ quality of life and height and bone mineral density Z-scores significantly improved, and their IFN biomarkers decreased. Three patients, two of whom had genetically undefined conditions, discontinued treatment because of lack of efficacy, and one CANDLE patient discontinued treatment because of BK viremia and azotemia. The most common adverse events were upper respiratory infections, gastroenteritis, and BK viruria and viremia. CONCLUSION. Upon baricitinib treatment, clinical manifestations and inflammatory and IFN biomarkers improved in patients with the monogenic interferonopathies CANDLE, SAVI, and other interferonopathies. Monitoring safety and efficacy is important in benefit-risk assessment
    corecore