51 research outputs found

    Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    Get PDF
    MM received funding from the Max Planck innovation funds for this project. PGDF was supported by a Marie Curie European Reintegration Grant (proposal nr 270891). CE was supported by German Science Foundation grants (DFG, EI 841/4-1 and EI 841/6-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A Strong Deletion Bias in Nonallelic Gene Conversion

    Get PDF
    Gene conversion is the unidirectional transfer of genetic information between orthologous (allelic) or paralogous (nonallelic) genomic segments. Though a number of studies have examined nucleotide replacements, little is known about length difference mutations produced by gene conversion. Here, we investigate insertions and deletions produced by nonallelic gene conversion in 338 Drosophila and 10,149 primate paralogs. Using a direct phylogenetic approach, we identify 179 insertions and 614 deletions in Drosophila paralogs, and 132 insertions and 455 deletions in primate paralogs. Thus, nonallelic gene conversion is strongly deletion-biased in both lineages, with almost 3.5 times as many conversion-induced deletions as insertions. In primates, the deletion bias is considerably stronger for long indels and, in both lineages, the per-site rate of gene conversion is orders of magnitudes higher than that of ordinary mutation. Due to this high rate, deletion-biased nonallelic gene conversion plays a key role in genome size evolution, leading to the cooperative shrinkage and eventual disappearance of selectively neutral paralogs

    The ERI-6/7 Helicase Acts at the First Stage of an siRNA Amplification Pathway That Targets Recent Gene Duplications

    Get PDF
    Endogenous small interfering RNAs (siRNAs) are a class of naturally occuring regulatory RNAs found in fungi, plants, and animals. Some endogenous siRNAs are required to silence transposons or function in chromosome segregation; however, the specific roles of most endogenous siRNAs are unclear. The helicase gene eri-6/7 was identified in the nematode Caenorhabditis elegans by the enhanced response to exogenous double-stranded RNAs (dsRNAs) of the null mutant. eri-6/7 encodes a helicase homologous to small RNA factors Armitage in Drosophila, SDE3 in Arabidopsis, and Mov10 in humans. Here we show that eri-6/7 mutations cause the loss of 26-nucleotide (nt) endogenous siRNAs derived from genes and pseudogenes in oocytes and embryos, as well as deficiencies in somatic 22-nucleotide secondary siRNAs corresponding to the same loci. About 80 genes are eri-6/7 targets that generate the embryonic endogenous siRNAs that silence the corresponding mRNAs. These 80 genes share extensive nucleotide sequence homology and are poorly conserved, suggesting a role for these endogenous siRNAs in silencing of and thereby directing the fate of recently acquired, duplicated genes. Unlike most endogenous siRNAs in C. elegans, eri-6/7–dependent siRNAs require Dicer. We identify that the eri-6/7–dependent siRNAs have a passenger strand that is ∼19 nt and is inset by ∼3–4 nts from both ends of the 26 nt guide siRNA, suggesting non-canonical Dicer processing. Mutations in the Argonaute ERGO-1, which associates with eri-6/7–dependent 26 nt siRNAs, cause passenger strand stabilization, indicating that ERGO-1 is required to separate the siRNA duplex, presumably through endonucleolytic cleavage of the passenger strand. Thus, like several other siRNA–associated Argonautes with a conserved RNaseH motif, ERGO-1 appears to be required for siRNA maturation

    Mosaic Origins of a Complex Chimeric Mitochondrial Gene in Silene vulgaris

    Get PDF
    Chimeric genes are significant sources of evolutionary innovation that are normally created when portions of two or more protein coding regions fuse to form a new open reading frame. In plant mitochondria astonishingly high numbers of different novel chimeric genes have been reported, where they are generated through processes of rearrangement and recombination. Nonetheless, because most studies do not find or report nucleotide variation within the same chimeric gene, evolution after the origination of these chimeric genes remains unstudied. Here we identify two alleles of a complex chimera in Silene vulgaris that are divergent in nucleotide sequence, genomic position relative to other mitochondrial genes, and expression patterns. Structural patterns suggest a history partially influenced by gene conversion between the chimeric gene and functional copies of subunit 1 of the mitochondrial ATP synthase gene (atp1). We identified small repeat structures within the chimeras that are likely recombination sites allowing generation of the chimera. These results establish the potential for chimeric gene divergence in different plant mitochondrial lineages within the same species. This result contrasts with the absence of diversity within mitochondrial chimeras found in crop species

    The map-1 Gene Family in Root-Knot Nematodes, Meloidogyne spp.: A Set of Taxonomically Restricted Genes Specific to Clonal Species

    Get PDF
    Taxonomically restricted genes (TRGs), i.e., genes that are restricted to a limited subset of phylogenetically related organisms, may be important in adaptation. In parasitic organisms, TRG-encoded proteins are possible determinants of the specificity of host-parasite interactions. In the root-knot nematode (RKN) Meloidogyne incognita, the map-1 gene family encodes expansin-like proteins that are secreted into plant tissues during parasitism, thought to act as effectors to promote successful root infection. MAP-1 proteins exhibit a modular architecture, with variable number and arrangement of 58 and 13-aa domains in their central part. Here, we address the evolutionary origins of this gene family using a combination of bioinformatics and molecular biology approaches. Map-1 genes were solely identified in one single member of the phylum Nematoda, i.e., the genus Meloidogyne, and not detected in any other nematode, thus indicating that the map-1 gene family is indeed a TRG family. A phylogenetic analysis of the distribution of map-1 genes in RKNs further showed that these genes are specifically present in species that reproduce by mitotic parthenogenesis, with the exception of M. floridensis, and could not be detected in RKNs reproducing by either meiotic parthenogenesis or amphimixis. These results highlight the divergence between mitotic and meiotic RKN species as a critical transition in the evolutionary history of these parasites. Analysis of the sequence conservation and organization of repeated domains in map-1 genes suggests that gene duplication(s) together with domain loss/duplication have contributed to the evolution of the map-1 family, and that some strong selection mechanism may be acting upon these genes to maintain their functional role(s) in the specificity of the plant-RKN interactions

    Molecular Trajectories Leading to the Alternative Fates of Duplicate Genes

    Get PDF
    Gene duplication generates extra gene copies in which mutations can accumulate without risking the function of pre-existing genes. Such mutations modify duplicates and contribute to evolutionary novelties. However, the vast majority of duplicates appear to be short-lived and experience duplicate silencing within a few million years. Little is known about the molecular mechanisms leading to these alternative fates. Here we delineate differing molecular trajectories of a relatively recent duplication event between humans and chimpanzees by investigating molecular properties of a single duplicate: DNA sequences, gene expression and promoter activities. The inverted duplication of the Glutathione S-transferase Theta 2 (GSTT2) gene had occurred at least 7 million years ago in the common ancestor of African great apes and is preserved in chimpanzees (Pan troglodytes), whereas a deletion polymorphism is prevalent in humans. The alternative fates are associated with expression divergence between these species, and reduced expression in humans is regulated by silencing mutations that have been propagated between duplicates by gene conversion. In contrast, selective constraint preserved duplicate divergence in chimpanzees. The difference in evolutionary processes left a unique DNA footprint in which dying duplicates are significantly more similar to each other (99.4%) than preserved ones. Such molecular trajectories could provide insights for the mechanisms underlying duplicate life and death in extant genomes

    Sequence of a complete chicken BG haplotype shows dynamic expansion and contraction of two gene lineages with particular expression patterns.

    Get PDF
    Many genes important in immunity are found as multigene families. The butyrophilin genes are members of the B7 family, playing diverse roles in co-regulation and perhaps in antigen presentation. In humans, a fixed number of butyrophilin genes are found in and around the major histocompatibility complex (MHC), and show striking association with particular autoimmune diseases. In chickens, BG genes encode homologues with somewhat different domain organisation. Only a few BG genes have been characterised, one involved in actin-myosin interaction in the intestinal brush border, and another implicated in resistance to viral diseases. We characterise all BG genes in B12 chickens, finding a multigene family organised as tandem repeats in the BG region outside the MHC, a single gene in the MHC (the BF-BL region), and another single gene on a different chromosome. There is a precise cell and tissue expression for each gene, but overall there are two kinds, those expressed by haemopoietic cells and those expressed in tissues (presumably non-haemopoietic cells), correlating with two different kinds of promoters and 5' untranslated regions (5'UTR). However, the multigene family in the BG region contains many hybrid genes, suggesting recombination and/or deletion as major evolutionary forces. We identify BG genes in the chicken whole genome shotgun sequence, as well as by comparison to other haplotypes by fibre fluorescence in situ hybridisation, confirming dynamic expansion and contraction within the BG region. Thus, the BG genes in chickens are undergoing much more rapid evolution compared to their homologues in mammals, for reasons yet to be understood.This is the final published version. It was originally published by PLOS in PLOS Genetics here: http://www.plosgenetics.org/article/info%3Adoi%2F10.1371%2Fjournal.pgen.1004417
    • …
    corecore